

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/scattertext.svg]Build Status [https://travis-ci.org/JasonKessler/scattertext]
[image: _images/scattertext1.svg]PyPI
[image: _images/GITTER-join%20chat-green.svg]Gitter Chat [https://gitter.im/scattertext/Lobby]
[image: _images/espadrine.svg]Twitter Follow [https://twitter.com/jasonkessler]

Scattertext 0.1.3

A tool for finding distinguishing terms in corpora and displaying them in an
interactive HTML scatter plot. Points corresponding to terms are selectively labeled
so that they don’t overlap with other labels or points.

Below is an example of using Scattertext to create visualize terms used in 2012 American
political conventions. The 2,000 most party-associated unigrams are displayed as
points in the scatter plot. Their x- and y- axes are the dense ranks of their usage by
Republican and Democratic speakers respectively.

import scattertext as st

df = st.SampleCorpora.ConventionData2012.get_data().assign(
 parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
)

corpus = st.CorpusFromParsedDocuments(
 df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus().compact(st.AssociationCompactor(2000))

html = st.produce_scattertext_explorer(
 corpus,
 category='democrat', category_name='Democratic', not_category_name='Republican',
 minimum_term_frequency=0, pmi_threshold_coefficient=0,
 width_in_pixels=1000, metadata=corpus.get_df()['speaker'],
 transform=st.Scalers.dense_rank
)
open('./demo_compact.html', 'w').write(html)

The HTML file written would look like the image below. Click on it for the actual interactive visualization.
[image: _images/demo_compact.png]demo_compact.html [https://jasonkessler.github.io/demo_compact.html]

Table of Contents

	Citation

	Installation

	Overview

	Customizing the Visualization and Plotting Dispersion

	Tutorial

	Help! I don’t know Python but I still want to use Scattertext

	Using Scattertext as a text analysis library: finding characteristic terms and their associations

	Visualizing term associations

	Visualizing phrase associations

	Visualizing Empath topics and categories

	Visualizing the Moral Foundations 2.0 Dictionary

	Ordering Terms by Corpus Characteristicness

	Document-Based Scatterplots

	Using Cohen’s d or Hedge’s r to visualize effect size

	Understanding Scaled F-Score

	Alternative term scoring methods

	The position-select-plot process

	Advanced Uses

	Visualizing differences based on only term frequencies

	Visualizing query-based categorical differences

	Visualizing any kind of term score

	Custom term positions

	Emoji analysis

	Visualizing SentencePiece tokens

	Visualizing scikit-learn text classification weights

	Creating lexicalized semiotic squares

	Visualizing topic models

	Creating T-SNE-style word embedding projection plots

	Using SVD to visualize any kind of word embeddings

	Using the same scale for both axes

	Examples

	A note on chart layout

	What’s new

	Sources

Citation

Jason S. Kessler. Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ. ACL System Demonstrations. 2017.
Link to preprint: arxiv.org/abs/1703.00565 [https://arxiv.org/abs/1703.00565]

@article{kessler2017scattertext,
 author = {Kessler, Jason S.},
 title = {Scattertext: a Browser-Based Tool for Visualizing how Corpora Differ},
 booktitle = {Proceedings of ACL-2017 System Demonstrations},
 year = {2017},
 address = {Vancouver, Canada},
 publisher = {Association for Computational Linguistics},
}

Installation

Install Python 3.4 or higher and run:

$ pip install scattertext

If you cannot (or don’t want to) install spaCy, substitute nlp = spacy.load('en') lines with
nlp = scattertext.WhitespaceNLP.whitespace_nlp. Note, this is not compatible
with word_similarity_explorer, and the tokenization and sentence boundary detection
capabilities will be low-performance regular expressions. See demo_without_spacy.py
for an example.

It is recommended you install jieba, spacy, empath, astropy, flashtext, gensim and umap-learn in order to
take full advantage of Scattertext.

Scattertext should mostly work with Python 2.7, but it may not.

The HTML outputs look best in Chrome and Safari.

Style Guide

The name of this project is Scattertext. “Scattertext” is written as a single word
and should be capitalized. When used in Python, the package scattertext should be defined
to the name st, i.e., import scattertext as st.

Overview

This is a tool that’s intended for visualizing what words and phrases
are more characteristic of a category than others.

Consider the example at the top of the page.

Looking at this seem overwhelming. In fact, it’s a relatively simple visualization of word use
during the 2012 political convention. Each dot corresponds to a word or phrase mentioned by Republicans or Democrats
during their conventions. The closer a dot is to the top of the plot, the more frequently it was used by
Democrats. The further right a dot, the more that word or phrase was used by Republicans. Words frequently
used by both parties, like “of” and “the” and even “Mitt” tend to occur in the upper-right-hand corner. Although very low
frequency words have been hidden to preserve computing resources, a word that neither party used, like “giraffe”
would be in the bottom-left-hand corner.

The interesting things happen close to the upper-left and lower-right corners. In the upper-left corner,
words like “auto” (as in auto bailout) and “millionaires” are frequently used by Democrats but infrequently or never used
by Republicans. Likewise, terms frequently used by Republicans and infrequently by Democrats occupy the
bottom-right corner. These include “big government” and “olympics”, referring to the Salt Lake City Olympics in which
Gov. Romney was involved.

Terms are colored by their association. Those that are more associated with Democrats are blue, and those
more associated with Republicans red.

Terms that are most characteristic of the both sets of documents are displayed
on the far-right of the visualization.

The inspiration for this visualization came from Dataclysm (Rudder, 2014).

Scattertext is designed to help you build these graphs and efficiently label points on them.

The documentation (including this readme) is a work in
progress. Please see the tutorial below as well as the PyData 2017 Tutorial [https://github.com/JasonKessler/Scattertext-PyData].

Poking around the code and tests should give you a good idea of how things work.

The library covers some novel and effective term-importance formulas, including Scaled F-Score.

Customizing the Visualization and Plotting Dispersion

New in Scattertext 0.1.0, one can use a dataframe for term/metadata positions and other term-specific data. We
can also use it to determine term-specific information which is shown after a term is clicked.

Note that it is possible to disable the use of document categories in Scattertext, as we shall see in this example.

This example covers plotting term dispersion against word frequency and identifying the terms which are most and least
dispersed given their frequencies. Using the Rosengren’s S dispersion measure (Gries 2021), terms tend to increase in their
dispersion scores as they get more frequent. We’ll see how we can both plot this effect and factor out the effect
of frequency.

This, along with a number of other dispersion metrics presented in Gries (2021), are available and documented
in the Dispersion class, which we’ll use later in the section.

Let’s start by creating a Convention corpus, but we’ll use the CorpusWithoutCategoriesFromParsedDocuments factory
to ensure that no categories are included in the corpus. If we try to find document categories, we’ll see that
all documents have the category ‘_’.

import scattertext as st

df = st.SampleCorpora.ConventionData2012.get_data().assign(
 parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences))
corpus = st.CorpusWithoutCategoriesFromParsedDocuments(
 df, parsed_col='parse'
).build().get_unigram_corpus().remove_infrequent_words(minimum_term_count=6)

corpus.get_categories()
Returns ['_']

Next, we’ll create a dataframe for all terms we’ll plot. We’ll just start by creating a dataframe where we capture
the frequency of each term and various dispersion metrics. These will be shown after a term is activated in the plot.

dispersion = st.Dispersion(corpus)

dispersion_df = dispersion.get_df()
dispersion_df.head(3)

Which returns

 Frequency Range SD VC Juilland's D Rosengren's S DP DP norm KL-divergence
thank 363 134 3.108113 1.618274 0.707416 0.694898 0.391548 0.391560 0.748808
you 1630 177 12.383708 1.435902 0.888596 0.898805 0.233627 0.233635 0.263337
so 549 155 3.523380 1.212967 0.774299 0.822244 0.283151 0.283160 0.411750

These are discussed in detail in Gries 2021 [http://www.stgries.info/research/ToApp_STG_Dispersion_PHCL.pdf].

We’ll use Rosengren’s S to find the dispersion of each term. It’s which a metric designed for corpus parts
(convention speeches in our case) of varying length. Where n is the number of documents in the corpus, s_i is the
percentage of tokens in the corpus found in document i, v_i is term count in document i, and f is the total number
of tokens in the corpus of type term type.

Rosengren’s S: [image: https://render.githubusercontent.com/render/math?math=%5Cfrac%7B%5CSum_%7Bi=1%7D%5E%7Bn%7D%5Csqrt%7Bs_i%20%5Ccdot%20%5Cv_i%7D]Rosengren's S^2}{f}) [https://render.githubusercontent.com/render/math?math=%5Cfrac%7B%5CSum_%7Bi=1%7D%5E%7Bn%7D%5Csqrt%7Bs_i%20%5Ccdot%20%5Cv_i%7D]^2}{f})

In order to start plotting, we’ll need to add coordinates for each term to the data frame.

To use the dataframe_scattertext function, you need, at a minimum a dataframe with ‘X’ and ‘Y’ columns.

The Xpos and Ypos columns indicate the positions of the original X and Y values on the scatterplot, and
need to be between 0 and 1. Functions in st.Scalers perform this scaling. Absent Xpos or Ypos,
st.Scalers.scale would be used.

Here is a sample of values:

	st.Scalers.scale(vec) Rescales the vector to where the minimum value is 0 and the maximum is 1.

	st.Scalers.log_scale(vec) Rescales the lgo of the vector

	st.Scalers.dense_ranke(vec) Rescales the dense rank of the vector

	st.Scalers.scale_center_zero_abs(vec) Rescales a vector with both positive and negative values such that the 0 value in the original vector is plotted at 0.5, negative values are projected from [-argmax(abs(vec)), 0] to [0, 0.5] and positive values projected from [0, argmax(abs(vec))] to [0.5, 1].

dispersion_df = dispersion_df.assign(
 X=lambda df: df.Frequency,
 Xpos=lambda df: st.Scalers.log_scale(df.X),
 Y=lambda df: df["Rosengren's S"],
 Ypos=lambda df: st.Scalers.scale(df.Y),
)

Note that the Ypos column here is not necessary since Y would automatically be scaled.

Finally, since we are not distinguishing between categories, we can set ignore_categories=True.

We can now plot this graph using the dataframe_scattertext function:

html = st.dataframe_scattertext(
 corpus,
 plot_df=dispersion_df,
 metadata=corpus.get_df()['speaker'] + ' (' + corpus.get_df()['party'].str.upper() + ')',
 ignore_categories=True,
 x_label='Log Frequency',
 y_label="Rosengren's S",
 y_axis_labels=['More Dispersion', 'Medium', 'Less Dispersion'],
)

Which yields (click for an interactive version):
[image: _images/dispersion-basic.png]dispersion-basic.html [https://jasonkessler.github.io/dispersion-basic.html]

Note that we can see various dispersion statistics under a term’s name, in addition to the standard usage statistics. To
customize the statistics which are displayed, set the term_description_column=[...] parameter with a list of column
names to be displayed.

One issue in this dispersion chart, which tends to be common to dispersion metrics in general, is that dispersion
and frequency tend to have a high correlation, but with a complex, non-linear curve. Depending on the metric,
this correlation curve could be power, linear, sigmoidal, or typically, something else.

In order to factor out this correlation, we can predict the dispersion from frequency using a non-parametric regressor,
and see which terms have the highest and lowest residuals with respect to their expected dispersions based on their
frequencies.

In this case, we’ll use a KNN regressor with 10 neighbors to predict Rosengren’S from term frequencies
(dispersion_df.X and .Y respectively), and compute the residual.

We’ll the residual to color points, with a neutral color for residuals around 0 and other colors for positive and
negative values. We’ll add a column in the data frame for point colors, and call it ColorScore. It is populated
with values between 0 and 1, with 0.5 as a netural color on the d3 interpolateWarm color scale. We use
st.Scalers.scale_center_zero_abs, discussed above, to make this transformation.

from sklearn.neighbors import KNeighborsRegressor

dispersion_df = dispersion_df.assign(
 Expected=lambda df: KNeighborsRegressor(n_neighbors=10).fit(
 df.X.values.reshape(-1, 1), df.Y
).predict(df.X.values.reshape(-1, 1)),
 Residual=lambda df: df.Y - df.Expected,
 ColorScore=lambda df: st.Scalers.scale_center_zero_abs(df.Residual)
)

Now we are ready to plot our colored dispersion chart. We assign the ColorScore column name to the color_score_column
paramter in dataframe_scattertext.

Additionally, We’d like to populate the two term lists on the
left with terms that have high and low residual values, indicating terms which have the most dispersion relative to
their frequency-expected level and the lowest. We can do this by the left_list_column parameter. We can specify
the upper and lower term list names using the header_names parameter. Finally, we can spiff-up the plot by
adding an appealing background color.

html = st.dataframe_scattertext(
 corpus,
 plot_df=dispersion_df,
 metadata=corpus.get_df()['speaker'] + ' (' + corpus.get_df()['party'].str.upper() + ')',
 ignore_categories=True,
 x_label='Log Frequency',
 y_label="Rosengren's S",
 y_axis_labels=['More Dispersion', 'Medium', 'Less Dispersion'],
 color_score_column='ColorScore',
 header_names={'upper': 'Lower than Expected', 'lower': 'More than Expected'},
 left_list_column='Residual',
 background_color='#e5e5e3'
)

Which yields (click for an interactive version):
[image: _images/dispersion-residual.png]dispersion-residual.html [https://jasonkessler.github.io/dispersion-residual.html]

Tutorial

Help! I don’t know Python but I still want to use Scattertext.

While you should learn Python fully use Scattertext, I’ve put some of the basic
functionality in a commandline tool. The tool is installed when you follow the procedure laid out
above.

Run $ scattertext --help from the commandline to see the full usage information. Here’s a quick example of
how to use vanilla Scattertext on a CSV file. The file needs to have at least two columns,
one containing the text to be analyzed, and another containing the category. In the example CSV below,
the columns are text and party, respectively.

The example below processes the CSV file, and the resulting HTML visualization into cli_demo.html.

Note, the parameter --minimum_term_frequency=8 omit terms that occur less than 8
times, and --regex_parser indicates a simple regular expression parser should
be used in place of spaCy. The flag --one_use_per_doc indicates that term frequency
should be calculated by only counting no more than one occurrence of a term in a document.

If you’d like to parse non-English text, you can use the --spacy_language_model argument to configure which
spaCy language model the tool will use. The default is ‘en’ and you can see the others available at
https://spacy.io/docs/api/language-models.

$ curl -s https://cdn.rawgit.com/JasonKessler/scattertext/master/scattertext/data/political_data.csv | head -2
party,speaker,text
democrat,BARACK OBAMA,"Thank you. Thank you. Thank you. Thank you so much.Thank you.Thank you so much. Thank you. Thank you very much, everybody. Thank you.
$
$ scattertext --datafile=https://cdn.rawgit.com/JasonKessler/scattertext/master/scattertext/data/political_data.csv \
> --text_column=text --category_column=party --metadata_column=speaker --positive_category=democrat \
> --category_display_name=Democratic --not_category_display_name=Republican --minimum_term_frequency=8 \
> --one_use_per_doc --regex_parser --outputfile=cli_demo.html

Using Scattertext as a text analysis library: finding characteristic terms and their associations

The following code creates a stand-alone HTML file that analyzes words
used by Democrats and Republicans in the 2012 party conventions, and outputs some notable
term associations.

First, import Scattertext and spaCy.

>>> import scattertext as st
>>> import spacy
>>> from pprint import pprint

Next, assemble the data you want to analyze into a Pandas data frame. It should have
at least two columns, the text you’d like to analyze, and the category you’d like to
study. Here, the text column contains convention speeches while the party column
contains the party of the speaker. We’ll eventually use the speaker column
to label snippets in the visualization.

>>> convention_df = st.SampleCorpora.ConventionData2012.get_data()
>>> convention_df.iloc[0]
party democrat
speaker BARACK OBAMA
text Thank you. Thank you. Thank you. Thank you so ...
Name: 0, dtype: object

Turn the data frame into a Scattertext Corpus to begin analyzing it. To look for differences
in parties, set the category_col parameter to 'party', and use the speeches,
present in the text column, as the texts to analyze by setting the text col
parameter. Finally, pass a spaCy model in to the nlp argument and call build() to construct the corpus.

Turn it into a Scattertext Corpus
>>> nlp = spacy.load('en')
>>> corpus = st.CorpusFromPandas(convention_df,
... category_col='party',
... text_col='text',
... nlp=nlp).build()

Let’s see characteristic terms in the corpus, and terms that are most associated Democrats and
Republicans. See slides
52 [http://www.slideshare.net/JasonKessler/turning-unstructured-content-into-kernels-of-ideas/52] to 59 [http://www.slideshare.net/JasonKessler/turning-unstructured-content-into-kernels-of-ideas/59] of the Turning Unstructured Content ot Kernels of Ideas [http://www.slideshare.net/JasonKessler/turning-unstructured-content-into-kernels-of-ideas/] talk for more details on these approaches.

Here are the terms that differentiate the corpus from a general English corpus.

>>> print(list(corpus.get_scaled_f_scores_vs_background().index[:10]))
['obama',
 'romney',
 'barack',
 'mitt',
 'obamacare',
 'biden',
 'romneys',
 'hardworking',
 'bailouts',
 'autoworkers']

Here are the terms that are most associated with Democrats:

>>> term_freq_df = corpus.get_term_freq_df()
>>> term_freq_df['Democratic Score'] = corpus.get_scaled_f_scores('democrat')
>>> pprint(list(term_freq_df.sort_values(by='Democratic Score', ascending=False).index[:10]))
['auto',
 'america forward',
 'auto industry',
 'insurance companies',
 'pell',
 'last week',
 'pell grants',
 "women 's",
 'platform',
 'millionaires']

And Republicans:

>>> term_freq_df['Republican Score'] = corpus.get_scaled_f_scores('republican')
>>> pprint(list(term_freq_df.sort_values(by='Republican Score', ascending=False).index[:10]))
['big government',
 "n't build",
 'mitt was',
 'the constitution',
 'he wanted',
 'hands that',
 'of mitt',
 '16 trillion',
 'turned around',
 'in florida']

Visualizing term associations

Now, let’s write the scatter plot a stand-alone HTML file. We’ll make the y-axis category “democrat”, and name
the category “Democrat” with a capital “D” for presentation
purposes. We’ll name the other category “Republican” with a capital “R”. All documents in the corpus without
the category “democrat” will be considered Republican. We set the width of the visualization in pixels, and label
each excerpt with the speaker using the metadata parameter. Finally, we write the visualization to an HTML file.

>>> html = st.produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'])
>>> open("Convention-Visualization.html", 'wb').write(html.encode('utf-8'))

Below is what the webpage looks like. Click it and wait a few minutes for the interactive version.
[image: _images/2012conventions0.0.2.2.png]Conventions-Visualization.html [https://jasonkessler.github.io/Conventions-Visualization.html]

Visualizing Phrase associations

Scattertext can also be used to visualize the category association of a variety of different phrase types. The word
“phrase” denotes any single or multi-word collocation.

Using PyTextRank

PyTextRank [https://github.com/DerwenAI/pytextrank], created by Paco Nathan, is an implementation of
a modified version of the TextRank algorithm (Mihalcea and Tarau 2004). It involves graph centrality
algorithm to extract a scored list of the most prominent phrases in a document. Here,
named entities recognized by spaCy. As of spaCy version 2.2, these are from an NER system trained on
Ontonotes 5 [https://catalog.ldc.upenn.edu/LDC2013T19].

Please install pytextrank $ pip3 install pytextrank before continuing with this tutorial.

To use, build a corpus as normal, but make sure you use spaCy to parse each document as opposed a built-in
whitespace_nlp-type tokenizer. Note that adding PyTextRank to the spaCy pipeline is not needed, as it
will be run separately by the PyTextRankPhrases object. We’ll reduce the number of phrases displayed in the
chart to 2000 using the AssociationCompactor. The phrases generated will be treated like non-textual features
since their document scores will not correspond to word counts.

import pytextrank, spacy
import scattertext as st

nlp = spacy.load('en')
nlp.add_pipe("textrank", last=True)

convention_df = st.SampleCorpora.ConventionData2012.get_data().assign(
 parse=lambda df: df.text.apply(nlp),
 party=lambda df: df.party.apply({'democrat': 'Democratic', 'republican': 'Republican'}.get)
)
corpus = st.CorpusFromParsedDocuments(
 convention_df,
 category_col='party',
 parsed_col='parse',
 feats_from_spacy_doc=st.PyTextRankPhrases()
).build(
).compact(
 AssociationCompactor(2000, use_non_text_features=True)
)

Note that the terms present in the corpus are named entities, and, as opposed to frequency counts, their scores
are the eigencentrality scores assigned to them by the TextRank algorithm. Running corpus.get_metadata_freq_df('')
will return, for each category, the sums of terms’ TextRank scores. The dense ranks of these scores will be used to
construct the scatter plot.

term_category_scores = corpus.get_metadata_freq_df('')
print(term_category_scores)
'''
 Democratic Republican
term
our future 1.113434 0.699103
your country 0.314057 0.000000
their home 0.385925 0.000000
our government 0.185483 0.462122
our workers 0.199704 0.210989
her family 0.540887 0.405552
our time 0.510930 0.410058
...
'''

Before we construct the plot, let’s some helper variables Since the aggregate TextRank scores aren’t particularly
interpretable, we’ll display the per-category rank of each score in the metadata_description field. These will be
displayed after a term is clicked.

term_ranks = np.argsort(np.argsort(-term_category_scores, axis=0), axis=0) + 1
metadata_descriptions = {
 term: '
' + '
'.join(
 '%s TextRank score rank: %s/%s' % (cat, term_ranks.loc[term, cat], corpus.get_num_metadata())
 for cat in corpus.get_categories())
 for term in corpus.get_metadata()
}

We can construct term scores in a couple ways. One is a standard dense-rank difference, a score which is used in most
of the two-category contrastive plots here, which will give us the most category-associated phrases. Another is to use
the maximum category-specific score, this will give us the most prominent phrases in each category, regardless of the
prominence in the other category. We’ll take both approaches in this tutorial, let’s compute the second kind of score,
the category-specific prominence below.

category_specific_prominence = term_category_scores.apply(
 lambda r: r.Democratic if r.Democratic > r.Republican else -r.Republican,
 axis=1
)

Now we’re ready output this chart. Note that we use a dense_rank transform, which places identically scalled phrases
atop each other. We use category_specific_prominence as scores, and set sort_by_dist as False to ensure the
phrases displayed on the right-hand side of the chart are ranked by the scores and not distance to the upper-left or
lower-right corners. Since matching phrases are treated as non-text features, we encode them as single-phrase topic
models and set the topic_model_preview_size to 0 to indicate the topic model list shouldn’t be shown. Finally,
we set ensure the full documents are displayed. Note the documents will be displayed in order of phrase-specific score.

html = produce_scattertext_explorer(
 corpus,
 category='Democratic',
 not_category_name='Republican',
 minimum_term_frequency=0,
 pmi_threshold_coefficient=0,
 width_in_pixels=1000,
 transform=dense_rank,
 metadata=corpus.get_df()['speaker'],
 scores=category_specific_prominence,
 sort_by_dist=False,
 use_non_text_features=True,
 topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
 topic_model_preview_size=0,
 metadata_descriptions=metadata_descriptions,
 use_full_doc=True
)

[image: _images/PyTextRankProminence.png]PyTextRankProminenceScore.html [https://jasonkessler.github.io/PyTextRankProminenceScore.html]

The most associated terms in each category make some sense, at least on a post hoc analysis. When referring to (then)
Governor Romney, Democrats used his surname “Romney” in their most central mentions of him, while Republicans used the
more familiar and humanizing “Mitt”. In terms of the President Obama, the phrase “Obama” didn’t show up as a top term i
n either, the but the first name “Barack” was one of the the most central phrases in Democratic speeches,
mirroring “Mitt.”

Alternatively, we can Dense Rank Difference in scores to color phrase-points and determine the top phrases to be
displayed on the right-hand side of the chart. Instead of setting scores as category-specific prominence scores,
we set term_scorer=RankDifference() to inject a way determining term scores into the scatter plot creation process.

html = produce_scattertext_explorer(
 corpus,
 category='Democratic',
 not_category_name='Republican',
 minimum_term_frequency=0,
 pmi_threshold_coefficient=0,
 width_in_pixels=1000,
 transform=dense_rank,
 use_non_text_features=True,
 metadata=corpus.get_df()['speaker'],
 term_scorer=RankDifference(),
 sort_by_dist=False,
 topic_model_term_lists={term: [term] for term in corpus.get_metadata()},
 topic_model_preview_size=0,
 metadata_descriptions=metadata_descriptions,
 use_full_doc=True
)

[image: _images/PyTextRankRankDiff.png]PyTextRankRankDiff.html [https://jasonkessler.github.io/PyTextRankRankDiff.html]

Using Phrasemachine to find phrases.

Phrasemachine from AbeHandler [https://github.com/AbeHandler] (Handler et al. 2016) uses regular expressions over
sequences of part-of-speech tags to identify noun phrases. This has the advantage over using spaCy’s NP-chunking
in that it tends to isolote meaningful, large noun phases which are free of appositives.

A opposed to PyTextRank, we’ll just use counts of these phrases, treating them like any other term.

import spacy
from scattertext import SampleCorpora, PhraseMachinePhrases, dense_rank, RankDifference, AssociationCompactor, produce_scattertext_explorer
from scattertext.CorpusFromPandas import CorpusFromPandas

corpus = (CorpusFromPandas(SampleCorpora.ConventionData2012.get_data(),
 category_col='party',
 text_col='text',
 feats_from_spacy_doc=PhraseMachinePhrases(),
 nlp=spacy.load('en', parser=False))
 .build().compact(AssociationCompactor(4000)))

html = produce_scattertext_explorer(corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 minimum_term_frequency=0,
 pmi_threshold_coefficient=0,
 transform=dense_rank,
 metadata=corpus.get_df()['speaker'],
 term_scorer=RankDifference(),
 width_in_pixels=1000)

[image: _images/PhraseMachine.png]Phrasemachine.html [https://jasonkessler.github.io/Phrasemachine.html]

Visualizing Empath topics and categories

In order to visualize Empath (Fast et al., 2016) topics and categories instead of terms, we’ll need to
create a Corpus of extracted topics and categories rather than unigrams and
bigrams. To do so, use the FeatsOnlyFromEmpath feature extractor. See the source code for
examples of how to make your own.

When creating the visualization, pass the use_non_text_features=True argument into
produce_scattertext_explorer. This will instruct it to use the labeled Empath
topics and categories instead of looking for terms. Since the documents returned
when a topic or category label is clicked will be in order of the document-level
category-association strength, setting use_full_doc=True makes sense, unless you have
enormous documents. Otherwise, the first 300 characters will be shown.

(New in 0.0.26). Ensure you include topic_model_term_lists=feat_builder.get_top_model_term_lists()
in produce_scattertext_explorer to ensure it bolds passages of snippets that match the
topic model.

>>> feat_builder = st.FeatsFromOnlyEmpath()
>>> empath_corpus = st.CorpusFromParsedDocuments(convention_df,
... category_col='party',
... feats_from_spacy_doc=feat_builder,
... parsed_col='text').build()
>>> html = st.produce_scattertext_explorer(empath_corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... use_non_text_features=True,
... use_full_doc=True,
... topic_model_term_lists=feat_builder.get_top_model_term_lists())
>>> open("Convention-Visualization-Empath.html", 'wb').write(html.encode('utf-8'))

[image: _images/3df994237cc738cd3572fd353d40b20527265cae.png]Convention-Visualization-Empath.html [https://jasonkessler.github.io/Convention-Visualization-Empath.html]

Visualizing General Inquirer Tag Categories and Document Categories

Scattertext also includes a feature builder to explore the relationship between General Inquirer Tag Categoires
and Document Categories. We’ll use a slightly different approach, looking at relationship of GI Tag Categories to political parties by using the
Z-Scores of the Log-Odds-Ratio with Uninformative Dirichlet Priors (Monroe 2008). We’ll use the produce_frequency_explorer plot
variation to visualize this relationship, setting the x-axis as the number of times a word in the tag category occurs,
and the y-axis as the z-score.

For more information on the General Inquirer, please see the General Inquirer Home Page [http://www.wjh.harvard.edu/%7Einquirer/].

We’ll use the same data set as before, except we’ll use the FeatsFromGeneralInquirer feature builder.

>>> general_inquirer_feature_builder = st.FeatsFromGeneralInquirer()
>>> corpus = st.CorpusFromPandas(convention_df,
... category_col='party',
... text_col='text',
... nlp=st.whitespace_nlp_with_sentences,
... feats_from_spacy_doc=general_inquirer_feature_builder).build()

Next, we’ll call produce_frequency_explorer in a similar way we called produce_scattertext_explorer in the previous section.
There are a few differences, however. First, we specify the LogOddsRatioUninformativeDirichletPrior term scorer, which
scores the relationships between the categories. The grey_threshold indicates the points scoring between [-1.96, 1.96]
(i.e., p > 0.05) should be colored gray. The argument metadata_descriptions=general_inquirer_feature_builder.get_definitions()
indicates that a dictionary mapping the tag name to a string definition is passed. When a tag is clicked, the definition
in the dictionary will be shown below the plot, as shown in the image following the snippet.

>>> html = st.produce_frequency_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... metadata=convention_df['speaker'],
... use_non_text_features=True,
... use_full_doc=True,
... term_scorer=st.LogOddsRatioUninformativeDirichletPrior(),
... grey_threshold=1.96,
... width_in_pixels=1000,
... topic_model_term_lists=general_inquirer_feature_builder.get_top_model_term_lists(),
... metadata_descriptions=general_inquirer_feature_builder.get_definitions())

Here’s the resulting chart.[image: _images/general_inquirer.png]demo_general_inquirer_frequency_plot.html [https://jasonkessler.github.io/demo_general_inquirer_frequency_plot.html]

[image: _images/general_inquirer2.png]demo_general_inquirer_frequency_plot.html [https://jasonkessler.github.io/demo_general_inquirer_frequency_plot.html]

Visualizing the Moral Foundations 2.0 Dictionary

The [Moral Foundations Theory] [https://moralfoundations.org/] proposes six psychological constructs
as building blocks of moral thinking, as described in Graham et al. (2013). These foundations are,
as described on [moralfoundations.org] [https://moralfoundations.org/]: care/harm, fairness/cheating, loyalty/betrayal,
authority/subversion, sanctity/degradation, and liberty/oppression. Please see the site for a more in-depth discussion
of these foundations.

Frimer et al. (2019) created the Moral Foundations Dictionary 2.0, or a lexicon of terms which invoke a moral foundation
as a virtue (favorable toward the foundation) or a vice (in opposition to the foundation).

This dictionary can be used in the same way as the General Inquirer. In this example, we can plot the Cohen’s d scores of
foundation-word counts relative to the frequencies words involving those foundations were invoked.

We can first load the the corpus as normal, and use st.FeatsFromMoralFoundationsDictionary() to extract features.

import scattertext as st

convention_df = st.SampleCorpora.ConventionData2012.get_data()
moral_foundations_feats = st.FeatsFromMoralFoundationsDictionary()
corpus = st.CorpusFromPandas(convention_df,
 category_col='party',
 text_col='text',
 nlp=st.whitespace_nlp_with_sentences,
 feats_from_spacy_doc=moral_foundations_feats).build()

Next, let’s use Cohen’s d term scorer to analyze the corpus, and describe a set of Cohen’s d association scores.

cohens_d_scorer = st.CohensD(corpus).use_metadata()
term_scorer = cohens_d_scorer.set_categories('democrat', ['republican']).term_scorer.get_score_df()

Which yields the following data frame:

	cohens_d	cohens_d_se	cohens_d_z	cohens_d_p	hedges_r	hedges_r_se	hedges_r_z	hedges_r_p	m1	m2	count1	count2	docs1	docs2																
:—————–	———–:	————–:	————-:	————-:	———–:	————–:	————-:	————-:	———–:	———–:	———:	———:	——–:	——–:																
care.virtue	0.662891	0.149425	4.43629	4.57621e-06	0.660257	0.159049	4.15129	1.65302e-05	0.195049	0.12164	760	379	115	54																
care.vice	0.24435	0.146025	1.67335	0.0471292	0.243379	0.152654	1.59432	0.0554325	0.0580005	0.0428358	244	121	80	41																
fairness.virtue	0.176794	0.145767	1.21286	0.112592	0.176092	0.152164	1.15725	0.123586	0.0502469	0.0403369	225	107	71	39																
fairness.vice	0.0707162	0.145528	0.485928	0.313509	0.0704352	0.151711	0.464273	0.321226	0.00718627	0.00573227	32	14	21	10																
authority.virtue	-0.0187793	0.145486	-0.12908	0.551353	-0.0187047	0.15163	-0.123357	0.549088	0.358192	0.361191	1281	788	122	66																
authority.vice	-0.0354164	0.145494	-0.243422	0.596161	-0.0352757	0.151646	-0.232619	0.591971	0.00353465	0.00390602	20	14	14	10																
sanctity.virtue	-0.512145	0.147848	-3.46399	0.999734	-0.51011	0.156098	-3.26788	0.999458	0.0587987	0.101677	265	309	74	48		sanctity.vice	-0.108011	0.145589	-0.74189	0.770923	-0.107582	0.151826	-0.708585	0.760709	0.00845048	0.0109339	35	28	23	20
loyalty.virtue	-0.413696	0.147031	-2.81367	0.997551	-0.412052	0.154558	-2.666	0.996162	0.259296	0.309776	1056	717	119	66																
loyalty.vice	-0.0854683	0.145549	-0.587213	0.72147	-0.0851287	0.151751	-0.560978	0.712594	0.00124518	0.00197022	5	5	5	4																

This data frame gives us Cohen’s d scores (and their standard errors and z-scores), Hedge’s r scores (ditto),
the mean document-length normalized topic usage per category (where the in-focus category is m1 [in this case Democrats]
and the out-of-focus is m2), the raw number of words used in for each topic (count1 and count2), and the number of documents
in each category with the topic (docs1 and docs2).

Note that Cohen’s d is the difference of m1 and m2 divided by their pooled standard deviation.

Now, let’s plot the d-scores of foundations vs. their frequencies.

html = st.produce_frequency_explorer(
 corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 metadata=convention_df['speaker'],
 use_non_text_features=True,
 use_full_doc=True,
 term_scorer=st.CohensD(corpus).use_metadata(),
 grey_threshold=0,
 width_in_pixels=1000,
 topic_model_term_lists=moral_foundations_feats.get_top_model_term_lists(),
 metadata_descriptions=moral_foundations_feats.get_definitions()
)

[image: _images/demo_moral_foundations.png]demo_moral_foundations.html [https://jasonkessler.github.io/demo_moral_foundations.html]

Ordering Terms by Corpus Characteristicness

Often the terms of most interest are ones that are characteristic to the corpus as a whole. These are terms which occur
frequently in all sets of documents being studied, but relatively infrequent compared to general term frequencies.

We can produce a plot with a characteristic score on the x-axis and class-association scores on the y-axis using the
function produce_characteristic_explorer.

Corpus characteristicness is the difference in dense term ranks between the words in all of the documents in the study
and a general English-language frequency list. See this Talk on Term-Class Association Scores [http://nbviewer.jupyter.org/github/JasonKessler/PuPPyTalk/blob/master/notebooks/Class-Association-Scores.ipynb]
for a more thorough explanation.

import scattertext as st

corpus = (st.CorpusFromPandas(st.SampleCorpora.ConventionData2012.get_data(),
 category_col='party',
 text_col='text',
 nlp=st.whitespace_nlp_with_sentences)
 .build()
 .get_unigram_corpus()
 .compact(st.ClassPercentageCompactor(term_count=2,
 term_ranker=st.OncePerDocFrequencyRanker)))
html = st.produce_characteristic_explorer(
	corpus,
	category='democrat',
	category_name='Democratic',
	not_category_name='Republican',
	metadata=corpus.get_df()['speaker']
)
open('demo_characteristic_chart.html', 'wb').write(html.encode('utf-8'))

[image: _images/demo_characteristic_chart.png]demo_characteristic_chart.html [https://jasonkessler.github.io/demo_characteristic_chart.html]

Document-Based Scatterplots

In addition to words, phases and topics, we can make each point correspond to a document. Let’s first create
a corpus object for the 2012 Conventions data set. This explanation follows demo_pca_documents.py

import pandas as pd
from sklearn.feature_extraction.text import TfidfTransformer
import scattertext as st
from scipy.sparse.linalg import svds

convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
corpus = (st.CorpusFromParsedDocuments(convention_df,
 category_col='party',
 parsed_col='parse')
 .build()
 .get_stoplisted_unigram_corpus())

Next, let’s add the document names as meta data in the corpus object. The add_doc_names_as_metadata function
takes an array of document names, and populates a new corpus’ meta data with those names. If two documents have the
same name, it appends a number (starting with 1) to the name.

corpus = corpus.add_doc_names_as_metadata(corpus.get_df()['speaker'])

Next, we find tf.idf scores for the corpus’ term-document matrix, run sparse SVD, and add them to a projection
data frame, making the x and y-axes the first two singular values, and indexing it on the corpus’ meta data, which
corresponds to the document names.

embeddings = TfidfTransformer().fit_transform(corpus.get_term_doc_mat())
u, s, vt = svds(embeddings, k=3, maxiter=20000, which='LM')
projection = pd.DataFrame({'term': corpus.get_metadata(), 'x': u.T[0], 'y': u.T[1]}).set_index('term')

Finally, set scores as 1 for Democrats and 0 for Republicans, rendering Republican documents as red points and
Democratic documents as blue. For more on the produce_pca_explorer function,
see Using SVD to visualize any kind of word embeddings.

category = 'democrat'
scores = (corpus.get_category_ids() == corpus.get_categories().index(category)).astype(int)
html = st.produce_pca_explorer(corpus,
 category=category,
 category_name='Democratic',
 not_category_name='Republican',
 metadata=convention_df['speaker'],
 width_in_pixels=1000,
 show_axes=False,
 use_non_text_features=True,
 use_full_doc=True,
 projection=projection,
 scores=scores,
 show_top_terms=False)

Click for an interactive version
[image: _images/doc_pca.png]demo_pca_documents.html [https://jasonkessler.github.io/demo_pca_documents.html]

Using Cohen’s d or Hedge’s r to visualize effect size.

Cohen’s d is a popular metric used to measure effect size. The definitions of Cohen’s d and Hedge’s r
from (Shinichi and Cuthill 2017) are implemented in Scattertext.

>>> convention_df = st.SampleCorpora.ConventionData2012.get_data()
>>> corpus = (st.CorpusFromPandas(convention_df,
... category_col='party',
... text_col='text',
... nlp=st.whitespace_nlp_with_sentences)
... .build()
... .get_unigram_corpus())

We can create a term scorer object to examine the effect sizes and other metrics.

>>> term_scorer = st.CohensD(corpus).set_categories('democrat', ['republican'])
>>> term_scorer.get_score_df().sort_values(by='cohens_d', ascending=False).head()
 cohens_d cohens_d_se cohens_d_z cohens_d_p hedges_r hedges_r_se hedges_r_z hedges_r_p m1 m2
obama 1.187378 0.024588 48.290444 0.000000e+00 1.187322 0.018419 64.461363 0.0 0.007778 0.002795
class 0.855859 0.020848 41.052045 0.000000e+00 0.855818 0.017227 49.677688 0.0 0.002222 0.000375
middle 0.826895 0.020553 40.232746 0.000000e+00 0.826857 0.017138 48.245626 0.0 0.002316 0.000400
president 0.820825 0.020492 40.056541 0.000000e+00 0.820786 0.017120 47.942661 0.0 0.010231 0.005369
barack 0.730624 0.019616 37.245725 6.213052e-304 0.730589 0.016862 43.327800 0.0 0.002547 0.000725

Our calculation of Cohen’s d is not directly based on term counts. Rather, we divide each document’s term counts by the total number
of terms in the document before calculating the statistics. m1 and m2 are, respectively the mean portions of words
in speeches made by Democrats and Republicans that were the term in question. The effect size (cohens_d) is the
difference between these means divided by the pooled standard standard deviation. cohens_d_se is the standard error
of the statistic, while cohens_d_z and cohens_d_p are the Z-scores and p-values indicating the statistical
significance of the effect. Corresponding columns are present for Hedge’s r, and unbiased version of Cohen’s d.

>>> st.produce_frequency_explorer(
 corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 term_scorer=st.CohensD(corpus),
 metadata=convention_df['speaker'],
 grey_threshold=0
)

Click for an interactive version.
[image: _images/cohen_d.png]demo_cohens_d.html [https://jasonkessler.github.io/demo_cohens_d.html]

Understanding Scaled F-Score

Let’s now turn our attention to a novel term scoring metric, Scaled F-Score. We’ll examine this on a unigram
version of the Rotten Tomatoes corpus (Pang et al. 2002). It contains excerpts of
positive and negative movie reviews.

Please see Scaled F Score Explanation [http://nbviewer.jupyter.org/github/JasonKessler/GlobalAI2018/blob/master/notebook/Scaled-F-Score-Explanation.ipynb]
for a notebook version of this analysis.

[image: _images/sfs1.png]Scaled F-Score Explanation 1

from scipy.stats import hmean

term_freq_df = corpus.get_unigram_corpus().get_term_freq_df()[['Positive freq', 'Negative freq']]
term_freq_df = term_freq_df[term_freq_df.sum(axis=1) > 0]

term_freq_df['pos_precision'] = (term_freq_df['Positive freq'] * 1./
 (term_freq_df['Positive freq'] + term_freq_df['Negative freq']))

term_freq_df['pos_freq_pct'] = (term_freq_df['Positive freq'] * 1.
 /term_freq_df['Positive freq'].sum())

term_freq_df['pos_hmean'] = (term_freq_df
 .apply(lambda x: (hmean([x['pos_precision'], x['pos_freq_pct']])
 if x['pos_precision'] > 0 and x['pos_freq_pct'] > 0
 else 0), axis=1))
term_freq_df.sort_values(by='pos_hmean', ascending=False).iloc[:10]

[image: _images/sfs2.png]SFS2

If we plot term frequency on the x-axis and the percentage of a term’s occurrences
which are in positive documents (i.e., its precision) on the y-axis, we can see
that low-frequency terms have a much higher variation in the precision. Given these terms have
low frequencies, the harmonic means are low. Thus, the only terms which have a high harmonic mean
are extremely frequent words which tend to all have near average precisions.

freq = term_freq_df.pos_freq_pct.values
prec = term_freq_df.pos_precision.values
html = st.produce_scattertext_explorer(
 corpus.remove_terms(set(corpus.get_terms()) - set(term_freq_df.index)),
 category='Positive',
 not_category_name='Negative',
 not_categories=['Negative'],

 x_label = 'Portion of words used in positive reviews',
 original_x = freq,
 x_coords = (freq - freq.min())/freq.max(),
 x_axis_values = [int(freq.min()*1000)/1000.,
 int(freq.max() * 1000)/1000.],

 y_label = 'Portion of documents containing word that are positive',
 original_y = prec,
 y_coords = (prec - prec.min())/prec.max(),
 y_axis_values = [int(prec.min() * 1000)/1000.,
 int((prec.max()/2.)*1000)/1000.,
 int(prec.max() * 1000)/1000.],
 scores = term_freq_df.pos_hmean.values,

 sort_by_dist=False,
 show_characteristic=False
)
file_name = 'not_normed_freq_prec.html'
open(file_name, 'wb').write(html.encode('utf-8'))
IFrame(src=file_name, width = 1300, height=700)

[image: _images/sfs3.png]SFS3

[image: _images/sfs4.png]SFS4

from scipy.stats import norm

def normcdf(x):
 return norm.cdf(x, x.mean(), x.std ())

term_freq_df['pos_precision_normcdf'] = normcdf(term_freq_df.pos_precision)

term_freq_df['pos_freq_pct_normcdf'] = normcdf(term_freq_df.pos_freq_pct.values)

term_freq_df['pos_scaled_f_score'] = hmean([term_freq_df['pos_precision_normcdf'], term_freq_df['pos_freq_pct_normcdf']])

term_freq_df.sort_values(by='pos_scaled_f_score', ascending=False).iloc[:10]

[image: _images/sfs5.png]SFS5

freq = term_freq_df.pos_freq_pct_normcdf.values
prec = term_freq_df.pos_precision_normcdf.values
html = st.produce_scattertext_explorer(
 corpus.remove_terms(set(corpus.get_terms()) - set(term_freq_df.index)),
 category='Positive',
 not_category_name='Negative',
 not_categories=['Negative'],

 x_label = 'Portion of words used in positive reviews (norm-cdf)',
 original_x = freq,
 x_coords = (freq - freq.min())/freq.max(),
 x_axis_values = [int(freq.min()*1000)/1000.,
 int(freq.max() * 1000)/1000.],

 y_label = 'documents containing word that are positive (norm-cdf)',
 original_y = prec,
 y_coords = (prec - prec.min())/prec.max(),
 y_axis_values = [int(prec.min() * 1000)/1000.,
 int((prec.max()/2.)*1000)/1000.,
 int(prec.max() * 1000)/1000.],
 scores = term_freq_df.pos_scaled_f_score.values,

 sort_by_dist=False,
 show_characteristic=False
)

[image: _images/sfs6.png]SFS6

[image: _images/sfs7.png]SFS7

term_freq_df['neg_precision_normcdf'] = normcdf((term_freq_df['Negative freq'] * 1./
 (term_freq_df['Negative freq'] + term_freq_df['Positive freq'])))

term_freq_df['neg_freq_pct_normcdf'] = normcdf((term_freq_df['Negative freq'] * 1.
 /term_freq_df['Negative freq'].sum()))

term_freq_df['neg_scaled_f_score'] = hmean([term_freq_df['neg_precision_normcdf'], term_freq_df['neg_freq_pct_normcdf']])

term_freq_df['scaled_f_score'] = 0
term_freq_df.loc[term_freq_df['pos_scaled_f_score'] > term_freq_df['neg_scaled_f_score'],
 'scaled_f_score'] = term_freq_df['pos_scaled_f_score']
term_freq_df.loc[term_freq_df['pos_scaled_f_score'] < term_freq_df['neg_scaled_f_score'],
 'scaled_f_score'] = 1-term_freq_df['neg_scaled_f_score']
term_freq_df['scaled_f_score'] = 2 * (term_freq_df['scaled_f_score'] - 0.5)
term_freq_df.sort_values(by='scaled_f_score', ascending=True).iloc[:10]

[image: _images/sfs8.png]SFS8

is_pos = term_freq_df.pos_scaled_f_score > term_freq_df.neg_scaled_f_score
freq = term_freq_df.pos_freq_pct_normcdf*is_pos - term_freq_df.neg_freq_pct_normcdf*~is_pos
prec = term_freq_df.pos_precision_normcdf*is_pos - term_freq_df.neg_precision_normcdf*~is_pos
def scale(ar):
 return (ar - ar.min())/(ar.max() - ar.min())
def close_gap(ar):
 ar[ar > 0] -= ar[ar > 0].min()
 ar[ar < 0] -= ar[ar < 0].max()
 return ar

html = st.produce_scattertext_explorer(
 corpus.remove_terms(set(corpus.get_terms()) - set(term_freq_df.index)),
 category='Positive',
 not_category_name='Negative',
 not_categories=['Negative'],

 x_label = 'Frequency',
 original_x = freq,
 x_coords = scale(close_gap(freq)),
 x_axis_labels = ['Frequent in Neg',
 'Not Frequent',
 'Frequent in Pos'],

 y_label = 'Precision',
 original_y = prec,
 y_coords = scale(close_gap(prec)),
 y_axis_labels = ['Neg Precise',
 'Imprecise',
 'Pos Precise'],

 scores = (term_freq_df.scaled_f_score.values + 1)/2,
 sort_by_dist=False,
 show_characteristic=False
)

[image: _images/sfs9.png]SFS9

We can use st.ScaledFScorePresets as a term scorer to display terms’ Scaled F-Score on the y-axis and
term frequencies on the x-axis.

html = st.produce_frequency_explorer(
 corpus.remove_terms(set(corpus.get_terms()) - set(term_freq_df.index)),
 category='Positive',
 not_category_name='Negative',
 not_categories=['Negative'],
 term_scorer=st.ScaledFScorePresets(beta=1, one_to_neg_one=True),
 metadata = rdf['movie_name'],
 grey_threshold=0
)

[image: _images/sfs10.png]SFS10

Alternative term scoring methods

Scaled F-Score is not the only scoring method included in Scattertext. Please click on one of the links below to
view a notebook which describes how other class association scores work and can be visualized through Scattertext.

	Google Colab Notebook [https://colab.research.google.com/drive/1snxAP8X6EIDi42FugJ_h5U-fBGDCqtyS] (recommend).

	Jupyter Notebook via NBViewer [https://colab.research.google.com/drive/1snxAP8X6EIDi42FugJ_h5U-fBGDCqtyS].

New in 0.0.2.73 is the delta JS-Divergence scorer DeltaJSDivergence scorer (Gallagher et al. 2020), and its
corresponding compactor (JSDCompactor.) See demo_deltajsd.py for an example usage.

The position-select-plot process

New in 0.0.2.72

Scattertext was originally set up to visualize corpora objects, which are connected sets of documents and
terms to visualize. The “compaction” process allows users to eliminate terms which may not be associated with a
category using a variety of feature selection methods. The issue with this is that the terms eliminated during
the selection process are not taken into account when scaling term positions.

This issue can be mitigated by using the position-select-plot process, where term positions are pre-determined
before the selection process is made.

Let’s first use the 2012 conventions corpus, update the category names, and create a unigram corpus.

import scattertext as st
import numpy as np

df = st.SampleCorpora.ConventionData2012.get_data().assign(
 parse=lambda df: df.text.apply(st.whitespace_nlp_with_sentences)
).assign(party=lambda df: df['party'].apply({'democrat': 'Democratic', 'republican': 'Republican'}.get))

corpus = st.CorpusFromParsedDocuments(
 df, category_col='party', parsed_col='parse'
).build().get_unigram_corpus()

category_name = 'Democratic'
not_category_name = 'Republican'

Next, let’s create a dataframe consisting of the original counts and their log-scale positions.

def get_log_scale_df(corpus, y_category, x_category):
 term_coord_df = corpus.get_term_freq_df('')

 # Log scale term counts (with a smoothing constant) as the initial coordinates
 coord_columns = []
 for category in [y_category, x_category]:
 col_name = category + '_coord'
 term_coord_df[col_name] = np.log(term_coord_df[category] + 1e-6) / np.log(2)
 coord_columns.append(col_name)

 # Scale these coordinates to between 0 and 1
 min_offset = term_coord_df[coord_columns].min(axis=0).min()
 for coord_column in coord_columns:
 term_coord_df[coord_column] -= min_offset
 max_offset = term_coord_df[coord_columns].max(axis=0).max()
 for coord_column in coord_columns:
 term_coord_df[coord_column] /= max_offset
 return term_coord_df

Get term coordinates from original corpus
term_coordinates = get_log_scale_df(corpus, category_name, not_category_name)
print(term_coordinates)

Here is a preview of the term_coordinates dataframe. The Democrat and
Republican columns contain the term counts, while the _coord columns
contain their logged coordinates. Visualizing 7,973 terms is difficult (but
possible) for people running Scattertext on most computers.

 Democratic Republican Democratic_coord Republican_coord
term
thank 158 205 0.860166 0.872032
you 836 794 0.936078 0.933729
so 337 212 0.894681 0.873562
much 84 76 0.831380 0.826820
very 62 75 0.817543 0.826216
...
precinct 0 2 0.000000 0.661076
godspeed 0 1 0.000000 0.629493
beauty 0 1 0.000000 0.629493
bumper 0 1 0.000000 0.629493
sticker 0 1 0.000000 0.629493

[7973 rows x 4 columns]

We can visualize this full data set by running the following code block. We’ll create a custom
Javascript function to populate the tooltip with the original term counts, and create a
Scattertext Explorer where the x and y coordinates and original values are specified from the data
frame. Additionally, we can use show_diagonal=True to draw a dashed diagonal line across the plot area.

You can click the chart below to see the interactive version. Note that it will take a while to load.

The tooltip JS function. Note that d is is the term data object, and ox and oy are the original x- and y-
axis counts.
get_tooltip_content = ('(function(d) {return d.term + "
' + not_category_name + ' Count: " ' +
 '+ d.ox +"
' + category_name + ' Count: " + d.oy})')

html_orig = st.produce_scattertext_explorer(
 corpus,
 category=category_name,
 not_category_name=not_category_name,
 minimum_term_frequency=0,
 pmi_threshold_coefficient=0,
 width_in_pixels=1000,
 metadata=corpus.get_df()['speaker'],
 show_diagonal=True,
 original_y=term_coordinates[category_name],
 original_x=term_coordinates[not_category_name],
 x_coords=term_coordinates[category_name + '_coord'],
 y_coords=term_coordinates[not_category_name + '_coord'],
 max_overlapping=3,
 use_global_scale=True,
 get_tooltip_content=get_tooltip_content,
)

[image: _images/demo_global_scale_log_orig.png]demo_global_scale_log_orig.png [https://jasonkessler.github.io/demo_global_scale_log_orig.html]

Next, we can visualize the compacted version of the corpus. The compaction, using ClassPercentageCompactor,
selects terms which frequently in each category. The term_count parameter, set to 2, is used to determine
the percentage threshold for terms to keep in a particular category. This is done using by calculating the
percentile of terms (types) in each category which appear more than two times. We find the smallest percentile,
and only include terms which occur above that percentile in a given category.

Note that this compaction leaves only 2,828 terms. This number is much easier for Scattertext to display
in a browser.

Select terms which appear a minimum threshold in both corpora
compact_corpus = corpus.compact(st.ClassPercentageCompactor(term_count=2))

Only take term coordinates of terms remaining in corpus
term_coordinates = term_coordinates.loc[compact_corpus.get_terms()]

html_compact = st.produce_scattertext_explorer(
 compact_corpus,
 category=category_name,
 not_category_name=not_category_name,
 minimum_term_frequency=0,
 pmi_threshold_coefficient=0,
 width_in_pixels=1000,
 metadata=corpus.get_df()['speaker'],
 show_diagonal=True,
 original_y=term_coordinates[category_name],
 original_x=term_coordinates[not_category_name],
 x_coords=term_coordinates[category_name + '_coord'],
 y_coords=term_coordinates[not_category_name + '_coord'],
 max_overlapping=3,
 use_global_scale=True,
 get_tooltip_content=get_tooltip_content,
)

[image: _images/demo_global_scale_log.png]demo_global_scale_log.png [https://jasonkessler.github.io/demo_global_scale_log.html]

Advanced uses

Visualizing differences based on only term frequencies

Occasionally, only term frequency statistics are available. This may happen in the case of very large,
lost, or proprietary data sets. TermCategoryFrequencies is a corpus representation,that can accept this
sort of data, along with any categorized documents that happen to be available.

Let use the Corpus of Contemporary American English [https://corpus.byu.edu/coca/] as an example.We’ll construct a visualization
to analyze the difference between spoken American English and English that occurs in fiction.

df = (pd.read_excel('https://www.wordfrequency.info/files/genres_sample.xls')
	 .dropna()
	 .set_index('lemma')[['SPOKEN', 'FICTION']]
	 .iloc[:1000])
df.head()	
'''
 SPOKEN FICTION
lemma
the 3859682.0 4092394.0
I 1346545.0 1382716.0
they 609735.0 352405.0
she 212920.0 798208.0
would 233766.0 229865.0
'''

Transforming this into a visualization is extremely easy. Just pass a dataframe indexed on
terms with columns indicating category-counts into the the TermCategoryFrequencies constructor.

term_cat_freq = st.TermCategoryFrequencies(df)

And call produce_scattertext_explorer normally:

html = st.produce_scattertext_explorer(
	term_cat_freq,
	category='SPOKEN',
	category_name='Spoken',
	not_category_name='Fiction',
)

[image: _images/demo_category_frequencies.png]demo_category_frequencies.html [https://jasonkessler.github.io/demo_category_frequencies.html]

If you’d like to incorporate some documents into the visualization, you can add them into to the
TermCategoyFrequencies object.

First, let’s extract some example Fiction and Spoken documents from the sample COCA corpus.

import requests, zipfile, io
coca_sample_url = 'http://corpus.byu.edu/cocatext/samples/text.zip'
zip_file = zipfile.ZipFile(io.BytesIO(requests.get(coca_sample_url).content))

document_df = pd.DataFrame(
	[{'text': zip_file.open(fn).read().decode('utf-8'),
	 'category': 'SPOKEN'}
	 for fn in zip_file.filelist if fn.filename.startswith('w_spok')][:2]
	+ [{'text': zip_file.open(fn).read().decode('utf-8'),
	 'category': 'FICTION'}
	 for fn in zip_file.filelist if fn.filename.startswith('w_fic')][:2])

And we’ll pass the documents_df dataframe into TermCategoryFrequencies via the document_category_df
parameter. Ensure the dataframe has two columns, ‘text’ and ‘category’. Afterward, we can
call produce_scattertext_explorer (or your visualization function of choice) normally.

doc_term_cat_freq = st.TermCategoryFrequencies(df, document_category_df=document_df)

html = st.produce_scattertext_explorer(
	doc_term_cat_freq,
	category='SPOKEN',
	category_name='Spoken',
	not_category_name='Fiction',
)

Visualizing query-based categorical differences

Word representations have recently become a hot topic in NLP. While lots of work has been done visualizing
how terms relate to one another given their scores
(e.g., http://projector.tensorflow.org/),
none to my knowledge has been done visualizing how we can use these to examine how
document categories differ.

In this example given a query term, “jobs”, we can see how Republicans and
Democrats talk about it differently.

In this configuration of Scattertext, words are colored by their similarity to a query phrase.This is done using spaCy [https://spacy.io/]-provided GloVe word vectors (trained on
the Common Crawl corpus). The cosine distance between vectors is used,
with mean vectors used for phrases.

The calculation of the most similar terms associated with each category is a simple heuristic. First,
sets of terms closely associated with a category are found. Second, these terms are ranked
based on their similarity to the query, and the top rank terms are displayed to the right of the
scatterplot.

A term is considered associated if its p-value is less than 0.05. P-values are
determined using Monroe et al. (2008)’s difference in the weighted log-odds-ratios with an
uninformative Dirichlet prior. This is the only model-based method discussed in Monroe et al.
that does not rely on a large, in-domain background corpus. Since we are scoring
bigrams in addition to the unigrams scored by Monroe, the size of the corpus would have to be larger
to have high enough bigram counts for proper penalization. This function
relies the Dirichlet distribution’s parameter alpha, a vector, which is uniformly set to 0.01.

Here is the code to produce such a visualization.

>>> from scattertext import word_similarity_explorer
>>> html = word_similarity_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... target_term='jobs',
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... alpha=0.01,
... max_p_val=0.05,
... save_svg_button=True)
>>> open("Convention-Visualization-Jobs.html", 'wb').write(html.encode('utf-8'))

[image: _images/1c88697a92302c7541176b18b7590a1fed01ede9.png]Convention-Visualization-Jobs.html [https://jasonkessler.github.io/Convention-Visualization-Jobs.html]

Developing and using bespoke word representations

Scattertext can interface with Gensim Word2Vec models. For example, here’s a snippet from demo_gensim_similarity.py
which illustrates how to train and use a word2vec model on a corpus. Note the similarities produced
reflect quirks of the corpus, e.g., “8” tends to refer to the 8% unemployment rate at the time of the
convention.

import spacy
from gensim.models import word2vec
from scattertext import SampleCorpora, word_similarity_explorer_gensim, Word2VecFromParsedCorpus
from scattertext.CorpusFromParsedDocuments import CorpusFromParsedDocuments
nlp = spacy.en.English()
convention_df = SampleCorpora.ConventionData2012.get_data()
convention_df['parsed'] = convention_df.text.apply(nlp)
corpus = CorpusFromParsedDocuments(convention_df, category_col='party', parsed_col='parsed').build()
model = word2vec.Word2Vec(size=300,
 alpha=0.025,
 window=5,
 min_count=5,
 max_vocab_size=None,
 sample=0,
 seed=1,
 workers=1,
 min_alpha=0.0001,
 sg=1,
 hs=1,
 negative=0,
 cbow_mean=0,
 iter=1,
 null_word=0,
 trim_rule=None,
 sorted_vocab=1)
html = word_similarity_explorer_gensim(corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 target_term='jobs',
 minimum_term_frequency=5,
 pmi_threshold_coefficient=4,
 width_in_pixels=1000,
 metadata=convention_df['speaker'],
 word2vec=Word2VecFromParsedCorpus(corpus, model).train(),
 max_p_val=0.05,
 save_svg_button=True)
open('./demo_gensim_similarity.html', 'wb').write(html.encode('utf-8'))

How Democrats and Republicans talked differently about “jobs” in their 2012 convention speeches.
[image: _images/demo_gensim_similarity.png]Convention-Visualization-Jobs.html [https://jasonkessler.github.io/demo_gensim_similarity.html]

Visualizing any kind of term score

We can use Scattertext to visualize alternative types of word scores, and ensure that 0 scores are greyed out. Use the sparse_explroer function to acomplish this, and see its source code for more details.

>>> from sklearn.linear_model import Lasso
>>> from scattertext import sparse_explorer
>>> html = sparse_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... scores = corpus.get_regression_coefs('democrat', Lasso(max_iter=10000)),
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... metadata=convention_df['speaker'])
>>> open('./Convention-Visualization-Sparse.html', 'wb').write(html.encode('utf-8'))

[image: _images/506d591ed09b20e7ff0d2fa0077f7a62695925d7.png]Convention-Visualization-Sparse.html [https://jasonkessler.github.io/Convention-Visualization-Sparse.html]

Custom term positions

You can also use custom term positions and axis labels. For example, you can base terms’ y-axis
positions on a regression coefficient and their x-axis on term frequency and label the axes
accordingly. The one catch is that axis positions must be scaled between 0 and 1.

First, let’s define two scaling functions: scale to project positive values to [0,1], and
zero_centered_scale project real values to [0,1], with negative values always <0.5, and
positive values always >0.5.

>>> def scale(ar):
... return (ar - ar.min()) / (ar.max() - ar.min())
...
>>> def zero_centered_scale(ar):
... ar[ar > 0] = scale(ar[ar > 0])
... ar[ar < 0] = -scale(-ar[ar < 0])
... return (ar + 1) / 2.

Next, let’s compute and scale term frequencies and L2-penalized regression coefficients. We’ll
hang on to the original coefficients and allow users to view them by mousing over terms.

>>> from sklearn.linear_model import LogisticRegression
>>> import numpy as np
>>>
>>> frequencies_scaled = scale(np.log(term_freq_df.sum(axis=1).values))
>>> scores = corpus.get_logreg_coefs('democrat',
... LogisticRegression(penalty='l2', C=10, max_iter=10000, n_jobs=-1))
>>> scores_scaled = zero_centered_scale(scores)

Finally, we can write the visualization. Note the use of the x_coords and y_coords
parameters to store the respective coordinates, the scores and sort_by_dist arguments
to register the original coefficients and use them to rank the terms in the right-hand
list, and the x_label and y_label arguments to label axes.

>>> html = produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... minimum_term_frequency=5,
... pmi_threshold_coefficient=4,
... width_in_pixels=1000,
... x_coords=frequencies_scaled,
... y_coords=scores_scaled,
... scores=scores,
... sort_by_dist=False,
... metadata=convention_df['speaker'],
... x_label='Log frequency',
... y_label='L2-penalized logistic regression coef')
>>> open('demo_custom_coordinates.html', 'wb').write(html.encode('utf-8'))

[image: _images/demo_custom_coordinates.png]demo_custom_coordinates.html [https://jasonkessler.github.io/demo_custom_coordinates.html]

Emoji analysis

The Emoji analysis capability displays a chart of the category-specific distribution
of Emoji. Let’s look at a new corpus, a set of tweets. We’ll build a visualization
showing how men and women use emoji differently.

Note: the following example is implemented in demo_emoji.py.

First, we’ll load the dataset and parse it using NLTK’s tweet tokenizer. Note, install NLTK
before running this example. It will take some time for the dataset to download.

import nltk, urllib.request, io, agefromname, zipfile
import scattertext as st
import pandas as pd

with zipfile.ZipFile(io.BytesIO(urllib.request.urlopen(
 'http://followthehashtag.com/content/uploads/USA-Geolocated-tweets-free-dataset-Followthehashtag.zip'
).read())) as zf:
 df = pd.read_excel(zf.open('dashboard_x_usa_x_filter_nativeretweets.xlsx'))

nlp = st.tweet_tokenzier_factory(nltk.tokenize.TweetTokenizer())
df['parse'] = df['Tweet content'].apply(nlp)

df.iloc[0]
'''
Tweet Id 721318437075685382
Date 2016-04-16
Hour 12:44
User Name Bill Schulhoff
Nickname BillSchulhoff
Bio Husband,Dad,GrandDad,Ordained Minister, Umpire...
Tweet content Wind 3.2 mph NNE. Barometer 30.20 in, Rising s...
Favs NaN
RTs NaN
Latitude 40.7603
Longitude -72.9547
Country US
Place (as appears on Bio) East Patchogue, NY
Profile picture http://pbs.twimg.com/profile_images/3788000007...
Followers 386
Following 705
Listed 24
Tweet language (ISO 639-1) en
Tweet Url http://www.twitter.com/BillSchulhoff/status/72...
parse Wind 3.2 mph NNE. Barometer 30.20 in, Rising s...
Name: 0, dtype: object
'''

Next, we’ll use the AgeFromName [https://github.com/JasonKessler/agefromname] package to find the probabilities of the gender of
each user given their first name. First, we’ll find a dataframe indexed on first names
that contains the probability that each someone with that first name is male (male_prob).

male_prob = agefromname.AgeFromName().get_all_name_male_prob()
male_prob.iloc[0]
'''
hi 1.00000
lo 0.95741
prob 1.00000
Name: aaban, dtype: float64
'''

Next, we’ll extract the first names of each user, and use the male_prob data frame
to find users whose names indicate there is at least a 90% chance they are either male or female,
label those users, and create new data frame df_mf with only those users.

df['first_name'] = df['User Name'].apply(lambda x: x.split()[0].lower() if type(x) == str and len(x.split()) > 0 else x)
df_aug = pd.merge(df, male_prob, left_on='first_name', right_index=True)
df_aug['gender'] = df_aug['prob'].apply(lambda x: 'm' if x > 0.9 else 'f' if x < 0.1 else '?')
df_mf = df_aug[df_aug['gender'].isin(['m', 'f'])]

The key to this analysis is to construct a corpus using only the emoji
extractor st.FeatsFromSpacyDocOnlyEmoji which builds a corpus only from
emoji and not from anything else.

corpus = st.CorpusFromParsedDocuments(
	df_mf,
	parsed_col='parse',
	category_col='gender',
	feats_from_spacy_doc=st.FeatsFromSpacyDocOnlyEmoji()
).build()

Next, we’ll run this through a standard produce_scattertext_explorer visualization
generation.

html = st.produce_scattertext_explorer(
	corpus,
	category='f',
	category_name='Female',
	not_category_name='Male',
	use_full_doc=True,
	term_ranker=OncePerDocFrequencyRanker,
	sort_by_dist=False,
	metadata=(df_mf['User Name']
	 + ' (@' + df_mf['Nickname'] + ') '
	 + df_mf['Date'].astype(str)),
	width_in_pixels=1000
)
open("EmojiGender.html", 'wb').write(html.encode('utf-8'))

[image: _images/EmojiGender.png]EmojiGender.html [https://jasonkessler.github.io/EmojiGender.html]

Visualizing SentencePiece Tokens

SentencePiece [https://github.com/google/sentencepiece] tokenization is a subword tokenization technique which
relies on a language-model to produce optimized tokenization. It has been used in large, transformer-based contextual
language models.

Ensure to run $ pip install sentencepiece before running this example.

First, let’s load the political convention data set as normal.

import tempfile
import re
import scattertext as st

convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df.text.apply(st.whitespace_nlp_with_sentences)

Next, let’s train a SentencePiece tokenizer based on this data. The train_sentence_piece_tokenizer function trains
a SentencePieceProcessor on the data set and returns it. You can of course use any SentencePieceProcessor.

def train_sentence_piece_tokenizer(documents, vocab_size):
 '''
 :param documents: list-like, a list of str documents
 :vocab_size int: the size of the vocabulary to output

 :return sentencepiece.SentencePieceProcessor
 '''
 import sentencepiece as spm
 sp = None
 with tempfile.NamedTemporaryFile(delete=True) as tempf:
 with tempfile.NamedTemporaryFile(delete=True) as tempm:
 tempf.write(('\n'.join(documents)).encode())
 spm.SentencePieceTrainer.Train(
 '--input=%s --model_prefix=%s --vocab_size=%s' % (tempf.name, tempm.name, vocab_size)
)
 sp = spm.SentencePieceProcessor()
 sp.load(tempm.name + '.model')
 return sp
sp = train_sentence_piece_tokenizer(convention_df.text.values, vocab_size=2000)

Next, let’s add the SentencePiece tokens as metadata when creating our corpus. In order to do this, pass
a FeatsFromSentencePiece instance into the feats_from_spacy_doc parameter. Pass the SentencePieceProcessor into
the constructor.

corpus = st.CorpusFromParsedDocuments(convention_df,
 parsed_col='parse',
 category_col='party',
 feats_from_spacy_doc=st.FeatsFromSentencePiece(sp)).build()

Now we can create the SentencePiece token scatter plot.

html = st.produce_scattertext_explorer(
 corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 sort_by_dist=False,
 metadata=convention_df['party'] + ': ' + convention_df['speaker'],
 term_scorer=st.RankDifference(),
 transform=st.Scalers.dense_rank,
 use_non_text_features=True,
 use_full_doc=True,
)

[image: _images/demo_sentence_piece.png]demo_sentence_piece.html [https://jasonkessler.github.io/demo_sentence_piece.html]

Visualizing scikit-learn text classification weights

Suppose you’d like to audit or better understand
weights or importances given to bag-of-words features
by a classifier.

It’s easy to use Scattertext to do, if you use a Scikit-learn-style classifier.

For example the Lighting [http://contrib.scikit-learn.org/lightning/] package makes available
high-performance linear classifiers which are have Scikit-compatible interfaces.

First, let’s import sklearn’s text feature extraction classes, the 20 Newsgroup
corpus, Lightning’s Primal Coordinate Descent classifier, and Scattertext. We’ll also
fetch the training portion of the Newsgroup corpus.

from lightning.classification import CDClassifier
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer

import scattertext as st

newsgroups_train = fetch_20newsgroups(
	subset='train',
	remove=('headers', 'footers', 'quotes')
)

Next, we’ll tokenize our corpus twice. Once into tfidf features
which will be used to train the classifier, an another time into
ngram counts that will be used by Scattertext. It’s important that
both vectorizers share the same vocabulary, since we’ll need to apply the
weight vector from the model onto our Scattertext Corpus.

vectorizer = TfidfVectorizer()
tfidf_X = vectorizer.fit_transform(newsgroups_train.data)
count_vectorizer = CountVectorizer(vocabulary=vectorizer.vocabulary_)

Next, we use the CorpusFromScikit factory to build a Scattertext Corpus object.
Ensure the X parameter is a document-by-feature matrix. The argument to the
y parameter is an array of class labels. Each label is an integer representing
a different news group. We the feature_vocabulary is the vocabulary used by the
vectorizers. The category_names are a list of the 20 newsgroup names which
as a class-label list. The raw_texts is a list of the text of newsgroup texts.

corpus = st.CorpusFromScikit(
	X=count_vectorizer.fit_transform(newsgroups_train.data),
	y=newsgroups_train.target,
	feature_vocabulary=vectorizer.vocabulary_,
	category_names=newsgroups_train.target_names,
	raw_texts=newsgroups_train.data
).build()

Now, we can train the model on tfidf_X and the categoricla response variable,
and capture feature weights for category 0 (”alt.atheism”).

clf = CDClassifier(penalty="l1/l2",
 loss="squared_hinge",
 multiclass=True,
 max_iter=20,
 alpha=1e-4,
 C=1.0 / tfidf_X.shape[0],
 tol=1e-3)
clf.fit(tfidf_X, newsgroups_train.target)
term_scores = clf.coef_[0]

Finally, we can create a Scattertext plot. We’ll use the Monroe-style visualization, and automatically
select around 4000 terms that encompass the set of frequent terms, terms with high absolute scores,
and terms that are characteristic of the corpus.

html = st.produce_frequency_explorer(
	corpus,
	'alt.atheism',
	scores=term_scores,
	use_term_significance=False,
	terms_to_include=st.AutoTermSelector.get_selected_terms(corpus, term_scores, 4000),
	metadata = ['/'.join(fn.split('/')[-2:]) for fn in newsgroups_train.filenames]
)

[image: _images/demo_sklearn.png]demo_sklearn.html [https://jasonkessler.github.io/demo_sklearn.html]

Let’s take a look at the performance of the classifier:

newsgroups_test = fetch_20newsgroups(subset='test',
 remove=('headers', 'footers', 'quotes'))
X_test = vectorizer.transform(newsgroups_test.data)
pred = clf.predict(X_test)
f1 = f1_score(pred, newsgroups_test.target, average='micro')
print("Microaveraged F1 score", f1)

Microaveraged F1 score 0.662108337759. Not bad over a ~0.05 baseline.

Creating lexicalized semiotic squares

Please see Signo [http://www.signosemio.com/greimas/semiotic-square.asp] for an
introduction to semiotic squares.

Some variants of the semiotic square-creator are can be seen in this notebook, which studies
words and phrases in headlines that had low or high Facebook engagement and were published by
either BuzzFeed or the New York Times: [http://nbviewer.jupyter.org/github/JasonKessler/PuPPyTalk/blob/master/notebooks/Explore-Headlines.ipynb]

The idea behind the semiotic square is to express the relationship between two opposing
concepts and concepts things within a larger domain of a discourse.
Examples of opposed concepts life or death, male or female, or, in our example, positive or negative sentiment.
Semiotics squares are comprised of four “corners”: the upper two corners are the opposing concepts,
while the bottom corners are the negation of the concepts.

Circumscribing the negation of a concept involves finding everything in the
domain of discourse that isn’t associated with the concept. For example, in the
life-death opposition, one can consider the universe of discourse to be all
animate beings, real and hypothetical. The not-alive category will cover dead things,
but also hypothetical entities like fictional characters or sentient AIs.

In building lexicalized semiotic squares, we consider concepts to be documents labeled
in a corpus. Documents, in this setting, can belong to one of three categories: two labels corresponding
to the opposing concepts, a neutral category, indicating a document is in the same domain as
the opposition, but cannot fall into one of opposing categories.

In the example below positive and negative movie reviews are treated as the opposing categories,
while plot descriptions of the same movies are treated as the neutral category.

Terms associated with one of the two opposing categories (relative only to the other) are
listed as being associated with that category. Terms associated with a netural category
(e.g., not positive) are terms which are associated with the disjunction of the opposite
category and the neutral category. For example, not-positive terms are those most associated
with the set of negative reviews and plot descriptions vs. positive reviews.

Common terms among adjacent corners of the square are also listed.

An HTML-rendered square is accompanied by a scatter plot. Points on the plot are terms.
The x-axis is the Z-score of the association to one of the opposed concepts. The y-axis
is the Z-score how associated a term is with the neutral set of documents relative to the
opposed set. A point’s red-blue color indicate the term’s opposed-association, while
the more desaturated a term is, the more it is associated with the neutral set of documents.

import scattertext as st
movie_df = st.SampleCorpora.RottenTomatoes.get_data()
movie_df.category = movie_df.category.apply\
	(lambda x: {'rotten': 'Negative', 'fresh': 'Positive', 'plot': 'Plot'}[x])
corpus = st.CorpusFromPandas(
	movie_df,
	category_col='category',
	text_col='text',
	nlp=st.whitespace_nlp_with_sentences
).build().get_unigram_corpus()

semiotic_square = st.SemioticSquare(
	corpus,
	category_a='Positive',
	category_b='Negative',
	neutral_categories=['Plot'],
	scorer=st.RankDifference(),
	labels={'not_a_and_not_b': 'Plot Descriptions', 'a_and_b': 'Reviews'}
)

html = st.produce_semiotic_square_explorer(semiotic_square,
 category_name='Positive',
 not_category_name='Negative',
 x_label='Fresh-Rotten',
 y_label='Plot-Review',
 neutral_category_name='Plot Description',
 metadata=movie_df['movie_name'])

[image: _images/semiotic_square_plot.png]semiotic square [https://jasonkessler.github.io/demo_semiotic.html]

There are a number of other types of semiotic square construction functions.

Visualizing Topic Models

A frequently requested feature of Scattertext has been the ability to visualize topic
models. While this capability has existed in some forms (e.g., the Empath visualization),
I’ve finally gotten around to implementing a concise API for such a visualization.
There are three main ways to visualize topic models using Scattertext.
The first is the simplest: manually entering topic models and visualizing them.
The second uses a Scikit-Learn pipeline to produce the topic models for visualization.
The third is a novel topic modeling technique, based on finding terms similar to a
custom set of seed terms.

Manually entered topic models

If you have already created a topic model, simply structure it as a dictionary.
This dictionary is keyed on string which serve as topic titles and are displayed
in the main scatterplot. The values are lists of words that belong to that topic. The words
that are in each topic list are bolded when they appear in a snippet.

Note that currently, there is no support for keyword scores.

For example, one might manually the following topic models to explore in the Convention
corpus:

topic_model = {
 'money': ['money','bank','banks','finances','financial','loan','dollars','income'],
 'jobs':['jobs','workers','labor','employment','worker','employee','job'],
 'patriotic':['america','country','flag','americans','patriotism','patriotic'],
 'family':['mother','father','mom','dad','sister','brother','grandfather','grandmother','son','daughter']
}

We can use the FeatsFromTopicModel class to transform this topic model into one which
can be visualized using Scattertext. This is used just like any other feature builder,
and we pass the topic model object into produce_scattertext_explorer.

import scattertext as st

topic_feature_builder = st.FeatsFromTopicModel(topic_model)

topic_corpus = st.CorpusFromParsedDocuments(
	convention_df,
	category_col='party',
	parsed_col='parse',
	feats_from_spacy_doc=topic_feature_builder
).build()

html = st.produce_scattertext_explorer(
	topic_corpus,
	category='democrat',
	category_name='Democratic',
	not_category_name='Republican',
	width_in_pixels=1000,
	metadata=convention_df['speaker'],
	use_non_text_features=True,
	use_full_doc=True,
	pmi_threshold_coefficient=0,
	topic_model_term_lists=topic_feature_builder.get_top_model_term_lists()
)

[image: _images/demo_custom_topic_model.png]demo_custom_topic_model.html [https://jasonkessler.github.io/demo_custom_topic_model.html]

Using Scikit-Learn for Topic Modeling

Since topic modeling using document-level coocurence generally produces poor results,
I’ve added a SentencesForTopicModeling class which allows clusterting by coocurence
at the sentence-level. It requires a ParsedCorpus object to be passed to its constructor,
and creates a term-sentence matrix internally.

Next, you can create a topic model dictionary like the one above by passing in a Scikit-Learn
clustering or dimensionality reduction pipeline. The only constraint is the last transformer
in the pipeline must populate a components_ attribute.

The num_topics_per_term attribute specifies how many terms should be added to a list.

In the following example, we’ll use NMF to cluster a stoplisted, unigram corpus of documents,
and use the topic model dictionary to create a FeatsFromTopicModel, just like before.

Note that in produce_scattertext_explorer, we make the topic_model_preview_size 20 in order to show
a preview of the first 20 terms in the topic in the snippet view as opposed to the default 10.

from sklearn.decomposition import NMF
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.pipeline import Pipeline

convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)

unigram_corpus = (st.CorpusFromParsedDocuments(convention_df,
 category_col='party',
 parsed_col='parse')
 .build().get_stoplisted_unigram_corpus())
topic_model = st.SentencesForTopicModeling(unigram_corpus).get_topics_from_model(
	Pipeline([
		('tfidf', TfidfTransformer(sublinear_tf=True)),
		('nmf', (NMF(n_components=100, alpha=.1, l1_ratio=.5, random_state=0)))
]),
	num_terms_per_topic=20
)

topic_feature_builder = st.FeatsFromTopicModel(topic_model)

topic_corpus = st.CorpusFromParsedDocuments(
	convention_df,
	category_col='party',
	parsed_col='parse',
	feats_from_spacy_doc=topic_feature_builder
).build()

html = st.produce_scattertext_explorer(
	topic_corpus,
	category='democrat',
	category_name='Democratic',
	not_category_name='Republican',
	width_in_pixels=1000,
	metadata=convention_df['speaker'],
	use_non_text_features=True,
	use_full_doc=True,
	pmi_threshold_coefficient=0,
	topic_model_term_lists=topic_feature_builder.get_top_model_term_lists(),
	topic_model_preview_size=20
)

[image: _images/demo_nmf_topic_model.png]demo_nmf_topic_model.html [https://jasonkessler.github.io/demo_nmf_topic_model.html]

Using a Word List to Generate a Series of Topics

A surprisingly easy way to generate good topic models is to use a term scoring formula
to find words that are associated with sentences where a seed word occurs vs. where
one doesn’t occur.

Given a custom term list, the SentencesForTopicModeling.get_topics_from_terms will
generate a series of topics. Note that the dense rank difference (RankDifference) works
particularly well for this task, and is the default parameter.

term_list = ['obama', 'romney', 'democrats', 'republicans', 'health', 'military', 'taxes',
 'education', 'olympics', 'auto', 'iraq', 'iran', 'israel']

unigram_corpus = (st.CorpusFromParsedDocuments(convention_df,
 category_col='party',
 parsed_col='parse')
 .build().get_stoplisted_unigram_corpus())

topic_model = (st.SentencesForTopicModeling(unigram_corpus)
 .get_topics_from_terms(term_list,
 scorer=st.RankDifference(),
 num_terms_per_topic=20))

topic_feature_builder = st.FeatsFromTopicModel(topic_model)
The remaining code is identical to two examples above. See demo_word_list_topic_model.py
for the complete example.

[image: _images/demo_word_list_topic_model.png]demo_word_list_topic_model.html [https://jasonkessler.github.io/demo_word_list_topic_model.html]

Creating T-SNE-style word embedding projection plots

Scattertext makes it easy to create word-similarity plots using projections of word embeddings as the x and y-axes.
In the example below, we create a stop-listed Corpus with only unigram terms. The produce_projection_explorer function
by uses Gensim to create word embeddings and then projects them to two dimentions using Uniform Manifold Approximation and Projection (UMAP).

UMAP is chosen over T-SNE because it can employ the cosine similarity between two word vectors instead of just the euclidean distance.

convention_df = st.SampleCorpora.ConventionData2012.get_data()
convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)

corpus = (st.CorpusFromParsedDocuments(convention_df, category_col='party', parsed_col='parse')
 .build().get_stoplisted_unigram_corpus())

html = st.produce_projection_explorer(corpus, category='democrat', category_name='Democratic',
 not_category_name='Republican', metadata=convention_df.speaker)

In order to use custom word embedding functions or projection functions, pass models into the word2vec_model
and projection_model parameters. In order to use T-SNE, for example, use
projection_model=sklearn.manifold.TSNE().

import umap
from gensim.models.word2vec import Word2Vec

html = st.produce_projection_explorer(corpus,
 word2vec_model=Word2Vec(size=100, window=5, min_count=10, workers=4),
 projection_model=umap.UMAP(min_dist=0.5, metric='cosine'),
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 metadata=convention_df.speaker)

[image: _images/demo_tsne_style.png]t-sne style plot [https://jasonkessler.github.io/demo_tsne_style.html]

Using SVD to visualize any kind of word embeddings

Term positions can also be determined by the positions of terms according to the output of principal component analysis,
and produce_projection_explorer also supports this functionality. We’ll look at how axes transformations (”scalers”
in Scattertext terminology) can make it easier to inspect the output of PCA.

We’ll use the 2012 Conventions corpus for these visualizations. Only unigrams occurring in at least three documents
will be considered.

>>> convention_df = st.SampleCorpora.ConventionData2012.get_data()
>>> convention_df['parse'] = convention_df['text'].apply(st.whitespace_nlp_with_sentences)
>>> corpus = (st.CorpusFromParsedDocuments(convention_df,
... category_col='party',
... parsed_col='parse')
... .build()
... .get_stoplisted_unigram_corpus()
... .remove_infrequent_words(minimum_term_count=3, term_ranker=st.OncePerDocFrequencyRanker))

Next, we use scikit-learn’s tf-idf transformer to find very simple, sparse embeddings for all of these words. Since,
we input a #docs x #terms matrix to the transformer, we can transpose it to get a proper term-embeddings matrix, where each row
corresponds to a term, and the columns correspond to document-specific tf-idf scores.

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> embeddings = TfidfTransformer().fit_transform(corpus.get_term_doc_mat())
>>> embeddings.shape
(189, 2159)
>>> corpus.get_num_docs(), corpus.get_num_terms()
(189, 2159)
>>> embeddings = embeddings.T
>>> embeddings.shape
(2159, 189)

Given these spare embeddings, we can apply sparse singular value decomposition to extract three factors. SVD outputs
factorizes the term embeddings matrix into three matrices, U, Σ, and VT. Importantly, the matrix U provides the singular values
for each term, and VT provides them for each document, and Σ is a vector of the singular values.

>>> from scipy.sparse.linalg import svds
>>> U, S, VT = svds(embeddings, k = 3, maxiter=20000, which='LM')
>>> U.shape
(2159, 3)
>>> S.shape
(3,)
>>> VT.shape
(3, 189)

We’ll look at the first two singular values, plotting each term such that the x-axis position is the first singular
value, and the y-axis term is the second. To do this, we make a “projection” data frame, where the x and y
columns store the first two singular values, and key the data frame on each term. This controls the term positions
on the chart.

>>> x_dim = 0; y_dim = 1;
>>> projection = pd.DataFrame({'term':corpus.get_terms(),
... 'x':U.T[x_dim],
... 'y':U.T[y_dim]}).set_index('term')

We’ll use the produce_pca_explorer function to visualize these. Note we include the projection object, and specify
which singular values were used for x and y (x_dim and y_dim) so we they can be labeled in the interactive
visualization.

html = st.produce_pca_explorer(corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 projection=projection,
 metadata=convention_df['speaker'],
 width_in_pixels=1000,
 x_dim=x_dim,
 y_dim=y_dim)

Click for an interactive visualization.[image: _images/svd1.png]pca [https://jasonkessler.github.io/demo_embeddings_svd_0_1.html]

We can easily re-scale the plot in order to make more efficient use of space. For example, passing in
scaler=scale_neg_1_to_1_with_zero_mean will make all four quadrants take equal area.

html = st.produce_pca_explorer(corpus,
 category='democrat',
 category_name='Democratic',
 not_category_name='Republican',
 projection=projection,
 metadata=convention_df['speaker'],
 width_in_pixels=1000,
 scaler=st.scale_neg_1_to_1_with_zero_mean,
 x_dim=x_dim,
 y_dim=y_dim)

Click for an interactive visualization.[image: _images/svd2.png]pca [https://jasonkessler.github.io/demo_embeddings_svd_0_1_scale_neg_1_to_1_with_zero_mean.html]

Examples

Please see the examples in the PyData 2017 Tutorial [https://github.com/JasonKessler/Scattertext-PyData] on Scattertext.

A note on chart layout

Cozy: The Collection Synthesizer [https://github.com/uwplse/cozy] (Loncaric 2016) was used to help determine
which terms could be labeled without overlapping a circle or another label. It automatically built a data structure to efficiently store and query the locations of each circle and labeled term.

The script to build rectangle-holder.js was

fields ax1 : long, ay1 : long, ax2 : long, ay2 : long
assume ax1 < ax2 and ay1 < ay2
query findMatchingRectangles(bx1 : long, by1 : long, bx2 : long, by2 : long)
 assume bx1 < bx2 and by1 < by2
 ax1 < bx2 and ax2 > bx1 and ay1 < by2 and ay2 > by1

And it was called using

$ python2.7 src/main.py <script file name> --enable-volume-trees \
 --js-class RectangleHolder --enable-hamt --enable-arrays --js rectangle_holder.js

What’s new

0.0.2.64

Adding in code to ensure that term statistics will show up even if no documents are present in visualization.

0.0.2.60

Better axis labeling (see demo_axis_crossbars_and_labels.py).

0.0.2.59

Pytextrank compatibility

0.0.2.57-58

Ensuring Pandas 1.0 compatibility fixing Issue #51 and scikit-learn stopwords import issue in #49.

0.0.2.44:

	Added the following classes to support rank-based feature-selection: AssociationCompactorByRank,
TermCategoryRanker.

0.0.2.43:

	Made the term pop-up box on the category pairplot only the category name

	Fixed optimal projection search function

	Merged PR from @millengustavo to fix when a FutureWarning is issued every time the get_background_frequency_df
is called.

0.0.2.42:

	Fixed clickablity of terms, coloring in certain plots

	Added initial number of terms to show in pairplot, using the terms_to_show parameter

0.0.2.41:

	Enabled changing protocol in pair plot

	Fixed semiotic square creator

	Added use_categories_as_metadata_and_replace_terms to TermDocMatrix.

	Added get_metadata_doc_count_df and get_metadata_count_mat to TermDocMatrix

0.0.2.40:

	Added categories to terms in pair plot halo, made them clickable

0.0.2.39:

	Fixing failing test case

	Adding halo to pair plot

0.0.2.38:

	Fixed term preview/clickability in semiotic square plots

	Fixed search box

	Added preliminary produce_pairplot

0.0.2.37:

	Javascript changes to support multiple plots on a single page.

	Added ScatterChart.hide_terms(terms: iter[str]) which enables selected terms to be hidden from the chart.

	Added ScatterChartData.score_transform to specify the function which can change an original score into a value
between 0 and 1 used for term coloring.

0.0.2.36:

	Added alternative_term_func to produce_scattertext_explorer which allows you to inject a function that activates
when a term is clicked.

	Fixed Cohen’s d calculation, and added HedgesR, and unbiased version of Cohen’s d which is a subclass of CohensD.

	Added the frequency_transform parameter to produce_frequency_explorer. This defaults to a log transform, but
allows you to use any way your heart desires to order terms along the x-axis.

0.0.2.35:

	Added show_category_headings=True to produce_scattertext_explorer. Setting this to False suppresses the list of categories
which will be displayed in the term context area.

	Added div_name argument to produce_scattertext_explorer and name-spaced important divs and classes by div_name
in HTML templates and Javascript.

	Added show_cross_axes=True to produce_scattertext_explorer. Setting this to False prevents the cross axes
from being displayed if show_axes is True.

	Changed default scorer to RankDifference.

	Made sure that term contexts were properly shown in all configurations.

0.0.2.34:

	TermDocMatrix.get_metadata_freq_df now accepts the label_append argument which by default adds ' freq' to the
end of each column.

	TermDocMatrix.get_num_cateogires returns the number of categories in a term-document matrix.

0.0.2.33:

Added the following methods:

	TermDocMatrixWithoutCategories.get_num_metadata

	TermDocMatrix.use_metadata_as_categories

	unified_context argument in produce_scattertext_explorer lists all contexts in a single column. This let’s
you see snippets organized by multiple categories in a single column. See demo_unified_context.py for an example.helps category-free or multi-category analyses.

0.0.2.32

Added a series of objects to handle uncategorized corpora. Added section on
Document-Based Scatterplots, and the add_doc_names_as_metadata function.
CategoryColorAssigner was also added to assign colors to a qualitative categories.

0.0.28-31

A number of new term scoring approaches including RelativeEntropy (a direct implementation of Frankhauser et al. (2014)), and
ZScores and implementation of the Z-Score model used in Frankhauser et al.

TermDocMatrix.get_metadata_freq_df() returns a metadata-doc corpus.

CorpusBasedTermScorer.set_ranker allows you to use a different term ranker when finding corpus-based scores. This not only
lets these scorers with metadata, but also allows you to integrate once-per-document counts.

Fixed produce_projection_explorer such that it can work with a predefined set of term embeddings. This can allow,
for example, the easy exploration of one hot-encoded term embeddings in addition to
arbitrary lower-dimensional embeddings.

Added add_metadata to TermDocMatrix in order to inject meta data after a TermDocMatrix object
has been created.

Made sure tooltip never started above the top of the web page.

0.0.2.28

Added DomainCompactor.

0.0.2.26-27.1

Fixed bug #31 [https://github.com/JasonKessler/scattertext/issues/31], enabling context to show when metadata value is
clicked.

Enabled display of terms in topic models in explorer, along with the the display of
customized topic models. Please see Visualizing topic models for an
overview of the additions.

Removed pkg_resources from Phrasemachine, corrected demo_phrase_machine.py

Now compatible with Gensim 3.4.0.

Added characteristic explorer, produce_characteristic_explorer, to plot terms with their characteristic scores on
the x-axis and their class-association scores on the y-axis. See Ordering Terms by Corpus Characteristicness for more details.

0.0.2.24-25

Added TermCategoryFrequencies in response to Issue 23. Please see Visualizing differences based on only term frequencies
for more details.

Added x_axis_labels and y_axis_labels parameters to produce_scattertext_explorer.
These let you include evenly-spaced string axis labels on the chart, as opposed to just
“Low”, “Medium” and “High”. These rely on d3’s ticks function, which can behave
unpredictable. Caveat usor.

0.0.2.16-23.1

Semiotic Squares now look better, and have customizable labels.

Incorporated the General Inquirer [http://www.wjh.harvard.edu/%7Einquirer/homecat.htm]
lexicon. For non-commercial use only. The lexicon is downloaded from their homepage at the start of each
use. See demo_general_inquierer.py.

Incorporated Phrasemachine from AbeHandler [https://github.com/AbeHandler] (Handler et al. 2016). For the license,
please see PhraseMachineLicense.txt. For an example, please see demo_phrase_machine.py.

Added CompactTerms for removing redundant and infrequent terms from term document matrices.
These occur if a word or phrase is always part of a larger phrase; the shorter phrase is
considered redundant and removed from the corpus. See demo_phrase_machine.py for an example.

Added FourSquare, a pattern that allows for the creation of a semiotic square with
separate categories for each corner. Please see demo_four_square.py for an early example.

Finally, added a way to easily perform T-SNE-style visualizations on a categorized corpus. This uses, by default,
the umap-learn [https://github.com/lmcinnes/umap] package. Please see demo_tsne_style.py.

Fixed to ScaledFScorePresets(one_to_neg_one=True), added UnigramsFromSpacyDoc.

Now, when using CorpusFromPandas, a CorpusDF object is returned, instead of a Corpus object. This new type of object
keeps a reference to the source data frame, and returns it via the CorpusDF.get_df() method.

The factory CorpusFromFeatureDict was added. It allows you to directly specify term counts and
metadata item counts within the dataframe. Please see test_corpusFromFeatureDict.py for an example.

0.0.2.15-16

Added a very semiotic square creator.

The idea to build a semiotic square that contrasts two categories in a Term Document Matrix
while using other categories as neutral categories.

See Creating semiotic squares for an overview on how to
use this functionality and semiotic squares.

Added a parameter to disable the display of the top-terms sidebar, e.g.,
produce_scattertext_explorer(..., show_top_terms=False, ...).

An interface to part of the subjectivity/sentiment dataset from
Bo Pang and Lillian Lee. ``A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization
Based on Minimum Cuts’’. ACL. 2004. See SampleCorpora.RottenTomatoes.

Fixed bug that caused tooltip placement to be off after scrolling.

Made category_name and not_category_name optional in produce_scattertext_explorer etc.

Created the ability to customize tooltips via the get_tooltip_content argument to
produce_scattertext_explorer etc., control axes labels via x_axis_values
and y_axis_values. The color_func parameter is a Javascript function to control color of a point. Function takes a parameter
which is a dictionary entry produced by ScatterChartExplorer.to_dict and returns a string.

0.0.2.14

Integration with Scikit-Learn’s text-analysis pipeline led the creation of the
CorpusFromScikit and TermDocMatrixFromScikit classes.

The AutoTermSelector class to automatically suggest terms to appear in the visualization.This can make it easier to show large data sets, and remove fiddling with the various
minimum term frequency parameters.

For an example of how to use CorpusFromScikit and AutoTermSelector, please see demo_sklearn.py

Also, I updated the library and examples to be compatible with spaCy 2.

Fixed bug when processing single-word documents, and set the default beta to 2.

0.0.2.11-13

Added produce_frequency_explorer function, and adding the PEP 369-compliant
__version__ attribute as mentioned in #19 [https://github.com/JasonKessler/scattertext/issues/19].
Fixed bug when creating visualizations with more than two possible categories. Now, by default,
category names will not be title-cased in the visualization, but will retain their original case.If you’d still like to do this this, use ScatterChart (or a descendant).to_dict(..., title_case_names=True).
Fixed DocsAndLabelsFromCorpus for Py 2 compatibility.

0.0.2.10

Fixed bugs in chinese_nlp when jieba has already been imported and in p-value
computation when performing log-odds-ratio w/ prior scoring.

Added demo for performing a Monroe et. al (2008) style visualization of
log-odds-ratio scores in demo_log_odds_ratio_prior.py.

0.0.2.9.*

Breaking change: pmi_filter_thresold has been replaced with pmi_threshold_coefficient.

Added Emoji and Tweet analysis. See Emoji analysis.

Characteristic terms falls back ot “Most frequent” if no terms used in the chart are present
in the background corpus.

Fixed top-term calculation for custom scores.

Set scaled f-score’s default beta to 0.5.

Added --spacy_language_model argument to the CLI.

Added the alternative_text_field option in produce_scattertext_explorer to show an
alternative text field when showing contexts in the interactive HTML visualization.

Updated ParsedCorpus.get_unigram_corpus to allow for continued
alternative_text_field functionality.

0.0.2.8.6

Added ability to for Scattertext to use noun chunks instead of unigrams and bigrams through the
FeatsFromSpacyDocOnlyNounChunks class. In order to use it, run your favorite Corpus or
TermDocMatrix factory, and pass in an instance of the class as a parameter:

st.CorpusFromParsedDocuments(..., feats_from_spacy_doc=st.FeatsFromSpacyDocOnlyNounChunks())

Fixed a bug in corpus construction that occurs when the last document has no features.

0.0.2.8.5

Now you don’t have to install tinysegmenter to use Scattertext. But you need to
install it if you want to parse Japanese. This caused a problem when Scattertext
was being installed on Windows.

0.0.2.8.1-4

Added TermDocMatrix.get_corner_score, giving an improved version of the
Rudder Score. Exposing whitespace_nlp_with_sentences. It’s a lightweight
bad regex sentence splitter built a top a bad regex tokenizer that somewhat
apes spaCy’s API. Use it if you don’t have spaCy and the English model
downloaded or if you care more about memory footprint and speed than accuracy.

It’s not compatible with word_similarity_explorer but is compatible with
`word_similarity_explorer_gensim’.

Tweaked scaled f-score normalization.

Fixed Javascript bug when clicking on ‘$’.

0.0.2.8.0

Fixed bug in Scaled F-Score computations, and changed computation to better score words that are inversely correlated to category.

Added Word2VecFromParsedCorpus to automate training Gensim word vectors from a corpus, andword_similarity_explorer_gensim to produce the visualization.

See demo_gensim_similarity.py for an example.

0.0.2.7.1

Added the d3_url and d3_scale_chromatic_url parameters to
produce_scattertext_explorer. This provides a way to manually specify the paths to “d3.js”
(i.e., the file from “https://cdnjs.cloudflare.com/ajax/libs/d3/4.6.0/d3.min.js”) and
“d3-scale-chromatic.v1.js” (i.e., the file from “https://d3js.org/d3-scale-chromatic.v1.min.js”).

This is important if you’re getting the error:

Javascript error adding output!
TypeError: d3.scaleLinear is not a function
See your browser Javascript console for more details.

It also lets you use Scattertext if you’re serving in an environment with no (or a restricted)
external Internet connection.

For example, if “d3.min.js” and “d3-scale-chromatic.v1.min.js” were present in the current
working directory, calling the following code would reference them locally instead of
the remote Javascript files. See Visualizing term associations
for code context.

>>> html = st.produce_scattertext_explorer(corpus,
... category='democrat',
... category_name='Democratic',
... not_category_name='Republican',
... width_in_pixels=1000,
... metadata=convention_df['speaker'],
... d3_url='d3.min.js',
... d3_scale_chromatic_url='d3-scale-chromatic.v1.min.js')

0.0.2.7.0

Fixed a bug in 0.0.2.6.0 that transposed default axis labels.

Added a Japanese mode to Scattertext. See demo_japanese.py for an example of
how to use Japanese. Please run pip install tinysegmenter to parse Japanese.

Also, the chiense_mode boolean parameter in
produce_scattertext_explorer has been renamed to asian_mode.

For example, the output of demo_japanese.py is:
[image: _images/demo_japanese.png]demo_japanese.html [https://jasonkessler.github.io/demo_japanese.html]

0.0.2.6.0

Custom term positions and axis labels. Although not recommended, you can
visualize different metrics on each axis in visualizations similar to Monroe et al. (2008).
Please see Custom term positions for more info.

0.0.2.5.0

Enhanced the visualization of query-based categorical differences, a.k.a the word_similarity_explorer
function. When run, a plot is produced that contains category associated terms
colored in either red or blue hues, and terms not associated with either class
colored in greyscale and slightly smaller. The intensity of each color indicates
association with the query term. For example:

[image: _images/Conventions-Viz-Explanation.png]Convention-Visualization-Jobs.html [https://jasonkessler.github.io/Convention-Visualization-Jobs.html]

0.0.2.4.6

Some minor bug fixes, and added a minimum_not_category_term_frequency parameter. This fixes a problem with
visualizing imbalanced datasets. It sets a minimum number of times a word that does not appear in the target
category must appear before it is displayed.

Added TermDocMatrix.remove_entity_tags method to remove entity type tags
from the analysis.

0.0.2.4.5

Fixed matched snippet not displaying issue #9, and fixed a Python 2 issue
in created a visualization using a ParsedCorpus prepared via CorpusFromParsedDocuments, mentioned
in the latter part of the issue #8 discussion.

Again, Python 2 is supported in experimental mode only.

0.0.2.4.4

Corrected example links on this Readme.

Fixed a bug in Issue 8 where the HTML visualization produced by produce_scattertext_html would fail.

0.0.2.4.2

Fixed a couple issues that rendered Scattertext broken in Python 2. Chinese processing still does not work.

Note: Use Python 3.4+ if you can.

0.0.2.4.1

Fixed links in Readme, and made regex NLP available in CLI.

0.0.2.4

Added the command line tool, and fixed a bug related to Empath visualizations.

0.0.2.3

Ability to see how a particular term is discussed differently between categories
through the word_similarity_explorer function.

Specialized mode to view sparse term scores.

Fixed a bug that was caused by repeated values in background unigram counts.

Added true alphabetical term sorting in visualizations.

Added an optional save-as-SVG button.

0.0.2.2

Addition option of showing characteristic terms (from the full set of documents) being considered.
The option (show_characteristic in produce_scattertext_explorer) is on by default,
but currently unavailable for Chinese. If you know of a good Chinese wordcount list,
please let me know. The algorithm used to produce these is F-Score.See this and the following slide [http://www.slideshare.net/JasonKessler/turning-unstructured-content-into-kernels-of-ideas/58] for more details

0.0.2.1.5

Added document and word count statistics to main visualization.

0.0.2.1.4

Added preliminary support for visualizing Empath [https://github.com/Ejhfast/empath-client] (Fast 2016) topics categories instead of emotions. See the tutorial for more information.

0.0.2.1.3

Improved term-labeling.

0.0.2.1.1

Addition of strip_final_period param to FeatsFromSpacyDoc to deal with spaCy
tokenization of all-caps documents that can leave periods at the end of terms.

0.0.2.1.0

I’ve added support for Chinese, including the ChineseNLP class, which uses a RegExp-based
sentence splitter and Jieba [https://github.com/fxsjy/jieba] for word
segmentation. To use it, see the demo_chinese.py file. Note that CorpusFromPandas
currently does not support ChineseNLP.

In order for the visualization to work, set the asian_mode flag to True in
produce_scattertext_explorer.

Sources

	2012 Convention Data: scraped from The New York Times. [http://www.nytimes.com/interactive/2012/09/06/us/politics/convention-word-counts.html?_r=0]

	count_1w: Peter Norvig assembled this file (downloaded from norvig.com [http://norvig.com/ngrams/count_1w.txt]). See http://norvig.com/ngrams/ for an explanation of how it was gathered from a very large corpus.

	hamlet.txt: William Shakespeare. From shapespeare.mit.edu [http://shakespeare.mit.edu/hamlet/full.html]

	Inspiration for text scatter plots: Rudder, Christian. Dataclysm: Who We Are (When We Think No One’s Looking). Random House Incorporated, 2014.

	Loncaric, Calvin. “Cozy: synthesizing collection data structures.” Proceedings of the 2016 24th ACM SIGSOFT International Symposium on Foundations of Software Engineering. ACM, 2016.

	Fast, Ethan, Binbin Chen, and Michael S. Bernstein. “Empath: Understanding topic signals in large-scale text.” Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. ACM, 2016.

	Burt L. Monroe, Michael P. Colaresi, and Kevin M. Quinn. 2008. Fightin’ words: Lexical feature selection and evaluation for identifying the content of political conflict. Political Analysis.

	Bo Pang and Lillian Lee. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts, Proceedings of the ACL, 2004.

	Abram Handler, Matt Denny, Hanna Wallach, and Brendan O’Connor. Bag of what? Simple noun phrase extraction for corpus analysis. NLP+CSS Workshop at EMNLP 2016.

	Peter Fankhauser, Jörg Knappen, Elke Teich. Exploring and visualizing variation in language resources. LREC 2014.

	Shinichi Nakagawa and Innes C. Cuthill. Effect size, confidence interval and statistical significance: a practical guide for biologists. 2007. In Biological Reviews 82.

	Cynthia M. Whissell. The dictionary of affect in language. 1993. In The Measurement of Emotions.

	David Bamman, Jacob Eisenstein, and Tyler Schnoebelen. GENDER IDENTITY AND LEXICAL VARIATION IN SOCIAL MEDIA. 2014.

	Rada Mihalcea, Paul Tarau. TextRank: Bringing Order into Text. EMNLP. 2004.

	Frimer, J. A., Boghrati, R., Haidt, J., Graham, J., & Dehgani, M. Moral Foundations Dictionary for Linguistic Analyses 2.0. Unpublished manuscript. 2019.

	Jesse Graham, Jonathan Haidt, Sena Koleva, Matt Motyl, Ravi Iyer, Sean P Wojcik, and Peter H Ditto. 2013. Moral foundations theory: The pragmatic validity of moral pluralism. Advances in Experimental Social Psychology, 47, 55-130

	Ryan J. Gallagher, Morgan R. Frank, Lewis Mitchell, Aaron J. Schwartz, Andrew J. Reagan, Christopher M. Danforth, and Peter Sheridan Dodds. Generalized Word Shift Graphs: A Method for Visualizing and Explaining Pairwise Comparisons Between Texts. 2020. Arxiv. https://arxiv.org/pdf/2008.02250.pdf

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_images/PyTextRankRankDiff.png
Fgquent

afford
early chil

con:

ral

Average

Infrequent
1

Barack
Al

Main Street
Wall Street

mocrat@ Frequency

3
gble health care
lhood education

uclear weapons

factories

oil companies
diplomacy
homes

truction workers

natural gas

new plants

the next decade

more tax breaks
nklin Roosevelt

the cars

Vouchercare

Sunday school
public schools

ye

21st-century

that call
vital legislation

its fair share
my foundation

e companies i

the same vision
the rewards
your prayers

Israelthe middle class Joe Fresident Obama women

Pell Grants veterans . jobs
bin Laden Social Security . Biden Detroit President Barac!(Ol?ama Charlotte
last week GM ° i ¢ seniors, Osama bin Laden i lustice B yan it
° war kids | lino ! schools our president H Lgovernmen
millionaires . bridges et o inols . my life - ouse Mitt
Lilly Ledbetter toughtimes ., . . ° *“Bain Capital
honor . % .o behalf o workers earth law freedom
ili e ° cars ° °delegates .) o* i leadership
1;::::;::0“031 rules * . Mexico et reach Minnesota care . " . o o dont
. . o
afair shotthe Senate = o€ r?ll)c‘i;zljle the war risk help half < . S . 'energy independence
Katrina re therest =TT, H wind Millions oL o ® 0T hange
January “cancer ! N doors mom innovation _ order . . " .
waste parents . .
. . . mayor my mom . the dream * i
® the brinkthe place k Hope gas ., the nation four years
VA © Maine countries his job d LI .
S e N farmers Arizona - WS % e ¢ . Lyesterday
staff a Democrat every day L.awar, o ° . “love
GOP, . my friends the love N “adream °©
Gl Bill vision that opportunity . S e o0 2, . DC., $,Delaware
. . o "
" banks skills Jobs .o Mydad co e, oD Nevada ofuelo OO
il i S ol track
themiltary ihis campaign e jagder the health care this world thekind , o ° Karen | D o
60s lobbyi plans backgrounds , © . 8 o place e Paul ° Oklahoma
obbyists treatment tears hospital . . . ° ® o growth . .
my story religions - _ ° ospitals 4o Issues | o a better life © Jtici . . the story
80s reform 9 N . ourparty Midwest o ° politicianSyreams service Reagan
June our faith 15 years . . optimism e e year °c o o i
" B confidence
Si a Shmtheir companies a city . : astate ° the path® °© a stt; new markets .
five years threats . o o oo N e :centuries dad abusiness
our journey abilty avote ce LY . o ® . 0o 0° . -“. . o o liberty
i ine © ° * apath o . ° .
failure o odecline ., doctors | “one . Cuba °Ronald Reagan
. .
o . ° . . Charlie o c e i
. . ®his children . . free enterprise
L o “elections the next president
"a people .a bar . akd o Olympics
.o

.
a government

® charities the Olympics

your bill . o« ® the morning N ent > . .
the waivers e . . ~calm nerves Bono immigration laws ~ American small businesses o big government
. awife ¢, . ®
abunch | .© [, % S Cmycty MK o T o eecm e mmme co'e ammms an cmcanommece 00t wo ao mmre o wms sase o o oo o
thejudge 4 the rhetoricthe beauty Paralympic Gold Medalistiittle chance conscience Poland risks Syria lowertaxes hands Ann Fon Paul

Top Democratic
Barack

Pell Grants

Planned Parenthood
San Antonio
insurance companies
equal pay

bin Laden

health care reform
birth control

elect President Barack Obama
equal work

Maryland

millionaires

Michelle Obama

Top Republican

Ron Paul

Oklahoma City

New Hampshire

hands

Ann

North Dakota

big government

Bella

United States Special Operation Commar
Jack Gilchrist

Keystone

United States Central Command
limited government

Yohana de la Torre

Republican Frequency

Infrequent

T
Average

T
Frequent

_static/down.png

_images/cohen_d.png
° Top Democratic
©
E obama
8 class
11848 obama . °
middle
president
middle barack
Il
class L president . pay
pay barack . for
° last for
fighting . health
" . education . care last
voucher access equal fair medicarecut
affordable €d
faced cuts 90 families m forward
billionaires . pre pell act millions ** choice would s fighting
ledbetter fight why OO Loy because byt fair
weallhlestgI she no me all .
so education
grandkids like up
cpngresswoman I ke my L act
jobs at that
rewarded on he
0 hispanics if Who ey you n th
don st know at ¢ Top Republi
prosper didn el J or has was! are . our we op Republican
what this
deficits 7 live dream canamerica government
risked S . lead - SR 3T, american T, Loohave g success
borrowed - “tre - R cwell o Ctime do 'rom:xly c. administration
. . . N . been W his and
achievement -« e .. ° “son aound - o gode it a, - unemployment
purpose blame .., ° 8 © gebt” . new of
2 fixfounding L) leader e story better — © . mitt
restore trillion
liberty business mitt | liberty
0.86 — unemplo n¥em. ° success
e ploy administration of
business
government .

N trillion
restore
leader
better
olympics
ston

Log Frequency y
T T T T 1
8 70 600 5000

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

Characteristic
obama
romney
barack

mitt
obamacare
biden
hardworking
billionaires
bain
grandkids
millionaires
ledbetter
pell

bless
dreamers
congresswomal
bipartisan
wealthiest
risked

trillion
republicans
recession
electing
gentlemen
understands
fought
grandchildren
greatness
elect
bankrupt

_images/PhraseMachine.png
Frequent

ins|

Average

Infrequent

Top Democratic
president barack obama

Most frequent
president obam
mitt romney
barack obama
united states
middle class
four years
american drear
paul ryan
health care
governor romne
small businesst
good evening
american peopl
president of the
president of the
white house
president barac
president barac
north carolina
vice president
hard work
united states of
states of americ
young people
small business
great state
private sector
joe biden
insurance comg

3
2
o
=
i E president obama president barack
e insurance companies
5 barack obama . mitt romney .
S middle class | auto industry
£ health care |) last week
a united states
four years pell grants
middle class
governor romney american dream
president barack obama . ° ° equal pay
) paul ryan north carolina
president barack north carolina | . tax cuts
good evening
white house class families
small businesses .
american people . ° bin laden
auto industry hard work young people
urance companies young people president of the united states . N
. . vice president , . social security
last week | resident of the united
— pell grants _tax cuts P TDp Republican
. united states of america | bai ital
equal pay . .class families) joe biden . states of america ain capital
.bin laden republican party great state federal government
social security .four more years new jobs . private sector . f t .
fair share _ health insurance | ree enterprise
he aml‘ care reform _ more years first time | fellow americans next president
clean energy ~ wall street first lady .
tax breaks . ¢ ° ° 1 ofi high school small business . mr. president
fairshot ; re- | foreign policy | ¢ :"a O last four years | . small business
lily ledbetter | o ep|ressmn o big government
early childhood . . . many people job creation few years . 9 9)
natural gas o . . past four years business owners mr. president many americans
great recession o . . eight years better future great country . . . job creators
main street | . . . N y
same rules co-, many americansbain capital | south carolina
two candidates si se . « 30vyears . Jsouth carolina ann romney
different visions i v federal government ’
steel mil . ° ° °) business owners
. free enterprise
i enterprisesystem, ., o o & o o e enextpresident ronald reagan
nation of immigrantslong hours american success salt lake big government next president of the unitegyto industry
Republican Frequency
T T T 1
Infrequent Average Frequent

Democratic document count: 123; word count: 76,836
Republican document count: 66: word count: 58,138

_static/comment.png

_images/PyTextRankProminence.png
Fgquent

afford
early chil

con:

ral

Average

Infrequent

>
§ Top Democratic
S ! Presiden
g Barack el Grants o ans Israelthe middle class Joe ~ Fresident Obama women S t Obama
- " bin Laden Social Securit ! : President Barack Obama _ , _Charlotte jobs Medicare
a%e COmPpaANIes § jast week GM . Ve seniors | Biden Detrolt | o justice . ° ° Paul Ryan North Carolina
G Main Street M war kids ° Osama bin Laden our president ! 3 " t
o P . . llinois " schools p . o,) e governmen women
ree i s o - . o i
E Wall Street erIIlonalres . bridges “tough . . » my life . . . *°House . Mitt
i ough times
able health care ':ﬁ::dbe“e’ . 9 AT PR CERC I R N N *.**Bain Captal ROMNEY
hood education (rillior:s . st e deleg.ates . e workers : carth . olaw e, freedom Democrats
. . . n .
uclear weapons |foreign policy rules * oMeXic0 ee’e reach, ° o “Minnesota™ , o cae ¢, o ° « o debt leadership Republicans
y a fair shotthe Senate « ,the middle the war o o risk . . hel A O . jobs
. factor!es atring e therest Jood o o2 wi.nd oot .”NTillio.ns PO T P Ce ® energy independence) !
oil companies | jon 5y © oo . . . s, . . .« . . % o change people
diplomacy cancer . «doors o . . »e mom) . innovation _ order . first
homes waste mayor my mom .th d N o parents © . . S
i) the brinkthe place i Hope ga: ream, the nation four years Israel
ruction workers - VA Maine countries his job ¢
days . . . Barack
natural gas aff a Democrat every day farmers Arizona LN . . .yesterday -
new plants GOP stal - Ty day awar, o . love millions
lthe next decade my friends the love “adream .
" isi th, i
more tx broake | Gl Bill vision at opportunity o0 2, . . D.C. . 1] ..Delaware ! today
nklin Roosevelt the milt banks skills Jobs) My dad . o, ., .sDad Nevada ,ggﬁ:&mgﬁ
the cars e miltary this campaign the health care this world the kind , Ol ° Karen track ° . . Top Republican
Vouch 60s the ladder . . ! .
louchercare lobbyists oatmont plans e backgrounds . 2 o .. P at;e . Paul ° Oklahoma Mitt
Sunday school my story reatment - hospitals issues® o a better life Jgrowth o e ®the stor Paul R
public schools ggg reform religions ourparty * Midwest ° politiciansyeams service Y °Reagan ven
ye June our faith 15 years " optimism » . :-. e government
2 i " " c. o ° year i : .
21st-century Si a shottheir companies o oy votes o : astate © thepath? °. 5 sn; new markets ,confidence Béln Capital
i that call our iourme five years K «® o oo N W& centuries dad a business Wisconsin
- . . .
vital legislation J y ability avote LV . . - . .h- e o liberty Washington
il . . a patl M
the same vision failure .® . decline * . M domorsp : : .one Cuba *© * .Ronald Reagan God
. y
the rewards N .‘“ . e o % ° . . : ® “Charlie o <.) Ohio
your prayers LY '. S e N '.-. . © . . his children . o free enterprise South Carolina
its fair share . s‘ahero e « ® * elections the next president th :
r) e American dream
my foundation - a people . *abar o akid . . ® Olympics N
yourbill . . ¢ themoming a government charities the Olympics small businesses
the ngverﬁ . awite ¢, ° . oo calmnerves Bono immigration laws American small businesses , big government work
a buncl e LI i
ey -“ I my city therisk ® o womwemen o' . - @ 0e ® 008 e o e 0o e s@ss % o o0 e freedom
all the rhetoricthe beauty Paralympic Gold Medalistlittle chance conscience Poland risks ~ Syria lower taxes hands Ann Ron Paul the world

Republican Frequency

T
Infrequent

T
Average

T 1
Frequent

_static/down-pressed.png

_images/demo_compact.png
obama|

1z Top Democratic Characteristic
5 obama class obama
H “g; e ato &nd i _
g2 score: 0.21724 o N middle barack
gle for the barack romney
§ N president _ on forward mitt obamacare
£ obama, but “heis Y health obamacare
e algs "0 “oh education biden
about S0, oo wase t'V®
me o e *twhar amerca pay romneys
an"l:’w . ° women billionaires
. . o his medicare bain
barack jobs because know A in—
. ve work e il mitt care millionaires
d e
m\dd.le. women m.WW o, or plan yohana
class * back g then -h R V\;ere . values ledbetter
“*e *hereevel oul
-] right , « o " - . outy last buenas
families, . let LI . great cut noches
o education care | M ven where . your' e 9% ot
g forward K * future o, ® ®e ° him time
5 oward, e last four . how " “nation 2 Top Republican greamers
z © 90, why said , states .
< pay . helpe o . o o new _been
§ oplan proud L el . government bless
medicare \aues . . N
. ool ® say * o need business congresswoman
fight o .. c'ome . e ** o children story underemployed
. never
vote _cut m:;; oot o _voryumicd Sworld betler better wealthiest
insurance everyone . takeOWn - god success risked
move love “,give o . business A iske
. .8 small . administration trillion
fair | P nex; Ie-ss paul | government | paul solyndra
auto | . unemployment gjelsvik
ot story, freedom breth
grandmother liberty republicans
l H .
m&g‘ﬂ%z 'H'u.. . small demonizing
H ballotj w ‘administration came recession
g rooseveltyo .« . son i i
&~ . . unemployment bifurcating
g wondering,; i liber .
£ 'Yxjannapile 16 annolympics Tty leadership insurmountable
Republican Frequency
T T T 1
Infrequent Average Frequent
Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138
Term: obama
Democratic frequency: Republican frequency:
193 per 25,000 terms 74 per 25,000 terms
919 per 1,000 docs 606 per 1,000 docs
Some of the 535 mentions: Some of the 167 mentions:
RICHARD DURBIN MITT ROMNEY
It was a cold, cold January afternoon when Barack Obama lifted his hand from Abraham Lincoln's Bible and | wish President Obama had succeeded because | want America to succeed.

looked out on an America facing an economic collapse. ; .
If you felt that excitement when you voted for Barack Obama, shouldn't you feel that way now that he's President
Well, President Obama and millions of American families think it's a great idea for America. Obama?

And with President Obama and Vice President Joe Biden in the White House, we will. Some of the companies we helped start are names you — you know and you've heard from tonight: an office
comnany called Stanlee where I'm nleaced to cee the Obama camnaian'e hbeen cshonninag — — todav Steel

_images/demo_custom_coordinates.png
‘Top Democratic
obama
opama president
: barack
president, class

middle class
middle
-— forward
miade cass "2 barack obama
fovard, . education
sne barack bama s medicare
famiies she
health
pay
va, © care

for

L2 penalized logite

o medeare,

crarote, o Ve
Bl s,

wealny
noctor gl san,

il il
R0 o

suers,y 0 1

MeGun

n, Top Republican
e+ govemment
o o2l amercan® o e mitt

o 120 * “amerca of

sooine’ *on
cam' F . . o ame My et
okanoma P i "o we and

resgan, unampoyman secess,

gan, snampo v oy s o business
aomnistaton® " %y vou, 2

you

. story
paul
o, . ‘administration
mit, success
goverment mitt omney.
his

business.

Low

it
Log regquency’

Low ‘Medium High

_images/demo_category_frequencies.png
Frequent

Average

Infrequent

2z Top Spoken
§ mm-hmm
§ government problem :r?:ld spending
! national oK i Cd
_a:, e election | vote | avonal, -. o win .‘i“‘hs: th:y taxpayer .
S . o an
. " Internet i ° S .
spendlng. .prosecutlon | verdict .airline . o o iSSUE facility . .o. . e ° activist
taxpayer - counsel, ° ® Cinvest® : %t %e cfie s o * train lass trilli
. activist target o diplomatic . - ot e mean . o9 rillion
prosecute * ° e ot * Ceontet e o mouth prosecute
. ., e . average ,o.° o . ode . slowriver ear re-election
trilion _graphic o online . . .« ° seize o - S
sgraphice o o trading % . way height * % initiative
re-election rove rhetoric, o . . eight ™ solide pope N
. . . Jtribute © e sl © P9y *T T buttone ® rhetoric
. economically © . increasin liver v . . " :
prevention . icti ° 9 - . LIS pac o light enforce
: * felony * ° . .addldl-on) exile ambon 1Y . el St lap ot rove
Pakistani | © rate o . © " bid lethal retain Cide ot tte magic ® | ® besid hi
export . . ! “ hug . o *win s eside graphic
polister | '. o " Viable ° draft choir pjug Ri:‘r:::“ypm lan: N tr;p m;n . cabin | swallow
i . 3 ban
o of e . etuition® decisive fulfil - fare . . [pad invigsible < pause .
legitimacy) cutting particle -~ . . orbit © ° CEASETe o0 . Top Fiction
i * boycott” © ¢ e g Turkish) . colony " . sigh
parliamentary = DOyco! L supplier scan X o lift autumn _cook de:imn . awakepgroh ¢}
.
deregulation , » colon lifelong * e . shave | * . , pistol st Irerrllble
downturne % . . clown , .Iazy ° . fog exit cocl
. o i X
insurer _* ¢ uize ° :‘ fiitertype lump ¢ weave ‘_k&lock blink
o thou . not
bilateral o fax . - attar |, ddl ®hut blink blouse
decrease fines o O ° neatly
liberalism® © thwart scout | . . fitlash o e 0dor | abrupt bruptl
- serving « +°. beetle * o o odove o . stream” 22UPIY o abruptly
) o s
environmentally | . | woe *° .0 ., <%, e monk clench
ure . .
subsidiary: griled A e . ., Lo ® cram argh ® bea * blouse _ whirl
- . “dye shoulder ¢, S slipper Jfetoh e et tremole,, perch
0y oo °. . inhabit * 2 . . neatly
solving * . gmodem ~Sty“5h: o . esatn caton® ° % ¢ . fla;. ° sigh flap
e
e, et ° ; ek . ehue * thread bony .'_darken. . o cock . fetch
adaptive *locus pastel alpha skilletspiral mount radiant seurry grunt. whirl clench headlight
- grunt
Fiction Frequency’
T T T 1
Infrequent Average Frequent

Spoken document count: 2; word count: 61,534

Characteristic
|

she
problem
attention
cause
jeopardize
pastel
serve
system
material
they
could
release
truck
point
couple
me

role

wide
employee
curious
taxpayer
would
court
office

left
facility

oh
frustration
ok

_static/file.png

_images/demo_characteristic_chart.png
More Democratic

Even

More Republican

Rank Difference

class middle
. .

forward
Jhealth °

a\
Rl medicare |

care

education |

women
evalues
plan . together families

insurance _she democrats |
.

® college | keep | Jout e fight | o
° % let ,_ economy fought
i «® ° seniors republicans °

folks pell 'republican

auto. act look, .,

access |

.
services . eline proud

o, biden
post Y 4 I
Page | i

.
games

americans

team each ®
free |

reagan

son came o

ini i Ilberly
admlmstratlt:n. better | .paul unemployment

story success

business
.

government .

Top Democratic
class
middle
barack
forward
health
education
pay
women
medicare
care

plan
values
last

cut

barack
.

obama
.

romney

Top Republican
government
. business
story
better
success
administration
paul
unemployment
freedom
liberty
small
came
son
leadership

mitt

Characteristic to Corpus

T T
Low Medium

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

T 1
High

Characteristic
obama
romney
mitt

barack
bless
americans
republicans
proud
biden
understands
elect
tonight
republican
thank
president
ryan
recession
millionaires
gentlemen
fought

pell
hardworking
trillion
democrats
governor
bipartisan
billionaires
prosperity
wealthiest
ledbetter

_static/minus.png

_images/demo_custom_topic_model.png
Tz Top Democratic
- jobs
5|8 patriotic family
g .
g7 money
c|8
] patriotic
E
]
a
Top Republican
family
jobs
money
jobs patriotic
°
g
§ -
2
family
H
g i money
Republican Frequency
Infrequent Average Frequent '
Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138
Search for term Type a word or two..
Topic: family
Topic preview: mother, father, mom, dad, sister, brother, grandfather, grandmother, son, daughter
Democratic frequency: Republican frequency:
3954 per 25,000 terms 4809 per 25,000 terms
463 per 1,000 docs 606 per 1,000 docs
Some of the 220 mentions: Some of the 212 mentions:
ELAINE BRYE LUCE VELA FORTUNO
Wow. What's a mom like me doing in a place like this? Good evening, Tampa. My name is Luce, and it is great to be here with you tonight.
I'm not even a political person, but what | am is a military mom. | am the proud mother of 20-year-old triplets, I'm a practicing attorney, a very proud Latil
They are a mom's most precious treasures. And | don't know when I'm going to get them together again Republican.
because one of them is always deploying. But because of Dr. Biden and the first lady, our lives are a little bit As a governor, he has unleashed a true Republican revolution that has already accompli
easier. Along with President Obama, they have made helping military families a top priority. They've brought Itis a success story of fiscal responsibility, controlled government spending, lower taxes

together the American people, including thousands of businesses, to become part of a nationwide support policy.

_images/demo_gensim_similarity.png
Tz Top Democratic
» g families
515 . on they cut
34T class . womeniobs i)
] middle class P& . T s companies
5 medicare o , o olasty o Lyl fair
g i vote % 3 3 g
8 fair ot Insurance move 'fought security . %, % g N o e, new care
o a N .]
auto * veterans,, > fighting 1P, workers ® . faw . PORY . Yo * .govemmenl workers
affordable . cuts harl re elect X . . oo o .
)) ’ . charlotte Jarantes 29 N . N st cuts
insurance companies _ roduce | ess Kot thanks? R B T S 8 affordable
o pell,, 0 8CC8SS 5 matter loans israel P! line < Save justice . 3 ... o freedom) 5
coverage _, . street hot . o 3 . free insurance companies
tax cuts head fall . shof stronger . e .° hear health care
voucher * bank colorado _ “ensure cost | . . others
wealthy”, . banks ", P texas “safe level s led security
i . N N .o test i
signed black A . it 2) later »*°, Spen%’iﬁ: es seniors
breaks . interest . i birth e o s, fulle . administration veterans
take away 18 . air Paid gy 1 ° ° o oSON i
Y e * iowa) .) . © % “hands insurance
3 roll _, . bus 4 ° rise trust federal
& . . L o)
2 T roosevelt " < . . o « truly ° o looking . team Tob Republi
. . ° . ca . "™ » ol i [« epublican
“ o® los ot defense «° citizen ¢ ° hopes « owners _capital P .p
jobs overseas ,* ‘ o h 5 ¢ add telt global p o Nope: .) regulations
twice ~ rid sacred ¢ co “ uge . * conts elt = oS . . regulations
solar £ diill b short cents < gither - self < hours trade
g v SO i fe
between two jil 40 |°W‘ea prices % ore guys armers ¢ dllow belief government
notion* tax cut * s s . leading .. ours __ fear Sl simple unemployment
#° fuel = ai que . -
1/2 pain . ¢ age race owe five trillion
minnesota »* june | 315 7, © o o X
feet” threats < peg taks o ool ot ‘23 fiscal fix . principles enterprise
60 code s . trade _bain capital inGi
lay el $10 Lot east Lot agree -” soive edge Jathers' P principles
il 2,000 i e,arisks“e p fail . beyond . church federal government
fill o . . ¢ de nations blame begin , reagan 8
younger s o 00"’ . o ° N
worthy) 4 . 9 e ’. . lierty ® hands
. .
= aside. ™" ‘ minds | o ® C e, e © unemployment defend
& ‘mate starting oss . « pray o, - 8 o “sons ann- limi
g i i imited
ag; _ lesson $1 purdens tape 42] 16 trillion olympics
£ experienced federal
- free enterprise
Republican Frequency P
T T T 1
Infrequent Average Frequent

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

Most similar
jobs

create jobs
spending
create
taxes
400,000
unions

d.c.
creating jobs
their
homes
regulations
programs
governments
families
farmers
neighbors
million
struggling
cut taxes
dreams
lower
sector
2,000
backs

own

tape
businesses
themselves
other

_images/Conventions-Viz-Explanation.png
13 Top Democratic
c
. |8 workers
€ |5 .
s |8 . who america i
gL Carewomenlobs. g f:ompanles .
] middle class _ class “ @ in insurance companies
g medicare _ -, . " last o ° 27585 people auto industry
Q . vote * 8 ¥ oud . .
§ insurance | oLe . fought security ; . -J: o v ..lLusrltness industry
. e o law etter y
auto | affordable i veterans | fighting . workers *® o ¢ . 3 e X ! N ° government education
auto industry . cuts charlotte re elect top LI - > R health
i i access ° o kept .. iraq . S el story ealth care
insufance companies |, platform . israel . . ¢ P join . ¢ < .
© epell o % nomatterdetrot loans investmen line + mean _ term Jo e o, ‘¥ . fsuogess care
A . o . reedom
millionaires |, . funding street . .W°" : financial « ~Save . 3 B : . free ! college
research . .= bank * o fall table . e‘:‘ztl'";g cost _ o % j{:::'sbusmess pay
voucher L. cutting | . ean h!:uV N ®. e led \onted health
. - i ¢ . e .
cleabn enkesrgy - . black ““tggt ., 20° . ¢ e spending , Ins‘turance
reaks o ° ‘ ° skills i e i . car inistrati cuts
i - basic quality air paid bith * = ats P son administration !
factories ran 4 . north carolina
‘ . -® « 7 third 4 iowa hi ¢ .. o
) take away .o . . hold e ire federal
g . ’ . “girl ° . e trust
a;, - wealthiest . . bills s . ¢ . team i
< : . bus . » ot ok e. o0 capital Top Republican
o ¢ . .
h IdhiObds o:e'sf'as 4 ! o ’ 5Shm bush """ d iy % hopes Towners, job creators
cl ood education .® o co i o istrict o i :
rid « clinton . regulations
" 4 . steel » i . business
4 hunt ¢ gm > . P oh offer reality. *hundreds Iower. hours
train i 40 “trm easier ¢ . broke _ feit o simple unemployment
. . o ¢ .
betweentwo tax cut ¢ . . § . small business
ideal grant j.°" que age MY . “ fear five
leading®% apart miles hasnt. © government
second term “" uncle brings g . o seem fis A federal
. ! :) 1t fix principles ‘ederal government
compromise nejther fuel s ¢ 49 junejohn lowest ¢ 3 resul o X
lay Lo cast * wealth - edge . fiscal o free enterprise
fulfill fill o ° Il fathers bain capital .
hed ~ teaching” L de. * ‘yearslaePVS © enterprise
ushe teachin, 3 ¢ ¢ dec. o i . .
P 9 o . .blame ¢ begin reagan administration
ounger ¢ o
e isd ” ¢ & ', liberty need
wisdomstarting . ‘ coal 16 .
= mindssearch . . unemployment federal
g escape S « duty p . - 8tailing * ann leadershi
2 d business owner process roset 42 ¢) dg g olympics leadership
_g gift experienced turned aroun capital
- america
Republican Frequency
T T T 1
Infrequent Average Frequent

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

Most similar
jobs

jobs overseas
creating jobs
create jobs
job

job growth

job creation
job creators
workers
seeking
businesses
opportunities
employees
industries
public employees
companies
insurance compan
services
business
working
unemployed
sector
unemployment
worker

small businesses
private sector
career

looking

auto industry
small business

_images/EmojiGender.png
Frequent

Average

Infrequent

Female Frequency

t
»®, °
ﬁ.
%
o')'. a
e .'..\ ® ;m..ﬂt’.
.. ‘et Lt)
) . "‘-A\ ‘*’.-.e
L.e’]
= I_I_ - A. = "g‘
e, = ® &
e 9. e B s
e S e
N
a ®
By
-
®
TN
ViR
*
..“5.)(
8
.o
B oo = ¢
R Y
PR R W

Top Female Most frequent

< L4
L4 ®
L4 ®
& e
W C
L4]
4 &
L4 L4
4 @
04 s
» B
¥ @
k4 *#
»® e
L4
ZF
Top Male -
'; ®
i v
Ve
s
- s
w
& a
(o]
o
h 9
o)
+ 0
d

Male Frequency

T
Infrequent

Male document count: 52,579; word count: 647,648
Female document count: 36,083; word count: 445,651

T
Frequent

_images/3df994237cc738cd3572fd353d40b20527265cae.png
Frequent
Democratic Frequency

heattn 18376

medical_emergency "

science | body

confusion_

* driving_ il
fn

weapon
terrorism

restaurant |

la
urban " vehicle?® art

philosophy .
legena™@ . ©
cleaning) . childish
clothing magic .
cold .,
plant .
_morning zest,

Average

toy

stealing prison

internet
liquid

100l sexual oL peauty”

cheerfulness

hygiene .
joy”
fashion SNP .-

pet Lcte L Toymeatty
fabrie e . . timidity
 fabric, . surprise
|mlab|\|ly... . hipster horror®
. exotic

Infrequent

health
per 25k words . . faw

breaking.
* aggression _feading |
B royalty
pain

“attractive

Top Democratic Terms
health

science
medical_emergency
weapon

breaking

urban

injury

car

restaurant

stealing

eating

driving

crime

clothing

positive_emotion
money | .

payment banking |
college, . ,School strust
fight * gain help . .
violence_ wealthy .+
g, e

business

achievement
family
. “optimism
party
- home
listen

* miltary | e

+ order divine

phone . *dominant_heirarchical

youth
affection

- music
religion

worship Top Republican Terms
beauty
attractive
worship
zest
religion
sadness
journalism
fear
sound
childish
emotional
music
cheerfulness

Rpublican Frequency philosophy

T T
Infrequent Average

Search for term

Democratic frequency:
183 per 25,000 terms
Some of the 204 mentions:

Frequent

Term: health

Republican frequency:
76 per 25,000 terms
Some of the 63 mentions:

_IBBY BRUCE

Nine weeks ago today, on the Fourth of July, my daughter Ruby was born. Ruby is a perfect,
healthy little girl. And because | have endometriosis, | feel particularly lucky to have her.

When | was 18, | began experiencing severe pelvic and abdominal pain. | went to so many
doctors, but nobody had any answers. Several doctors outright dismissed me, treating my pain as
the product of a dumb kid's dramatic imagination.

Finally, | went to Planned Parenthood. They listened to me as no one else has.

They answered my questions. A caring nurse practitioner told me she thought | had
endometriosis. She connected me with an excellent, respectful surgeon who removed the excess
.endometrial growth in my pelvis and finally | got better.

Twelve years later, | am still so grateful for the excellent, affordable, respectful care | received
from Planned Parenthood.

‘When Mitt Romney and Paul Ryan make threats about getting rid of Planned Parenthood funding,
it is clear that they have not given a thought to women like me — women with limited resources
who are sick and scared. They haven't thought about planned and wanted babies like Ruby who
are able to be here only because their mothers received the health care they needed.

President Obama understands and he cares. And that's why I'm here. I'm here tonight for my
daughter — to stand up for her so that when she grows up, Planned Parenthood will be there for

YN

LUCE VELA FORTUNO

Good evening, Tampa. My name is Luce, and it is great to be here with you tonight.

| am the proud mother of 20-year-old triplets, I'm a practicing attorney, a very proud Latina and a
die-hard Republican.

As a governor, he has unleashed a true Republican revolution that has already accomplished so
much.

Itis a success story of fiscal responsibility, controlled government spending, lower taxes and pro-
growth policy.

But it is also one of caring and compassionate attention to a social and faith-based agenda of
unprecedented reach and consequence. Through it all, | have stood by his side and learned what
it takes to be the rock of support to a great leader, just like our next speaker has done for 43 years
for our next president, Mitt Romney.

Ann's story is one of remarkable courage, tenacity, perseverance and commitment, a story that
stands in its own right, one that inspires all who know her, a woman of faith, a devoted wife, a
caring mother to five boys, a multiple sclerosis and cancer survivor, a tireless advocate and a
timeless first lady of Massachusetts.

For decades, she's been a fighter who has championed the cause of disadvantaged children,
been an advocate of teenage pregnancy prevention, a leader of faith- and community-based

AR S

Cd T e L T

_images/506d591ed09b20e7ff0d2fa0077f7a62695925d7.png
18 ‘Top Democratic.
- |3 for
g |8 obama
£z forward
H clss
H e O g s barack
e affor e ightng seniors. she
nsfarcs companis e oo @ e ecucaion
I S~ U AT o nat
averagn S o oAy medicare
" m: street vot
s s - ™ Jorg e want
weainy Guting o ,‘ charlotte:
s b
- 5 . t
1 R P S e 0 amitton g
pays 4 deepy early ek, roll back
8| woames - an S nancs
S J— e
H s = e Top Republican
fwee cast hopes e foguisons government
cary chichood 10 waie sser s ST - ot
o @ aowe o o e
shut st el orty alow mple mitt
oo "y 0" anac s
between two soar ool Qe ars - presicency success
prosper. owe. of I
apart oG paul
apponent uce brngs o
mimesota ., %% gt s s fovng, = principies leadership
ay © e s carng oo story
sodor an s tavers
aonng ! * beyond vt churen is
o2 core. puerto. ‘begin reagan ‘administration
Younger o aominss
™ ol . g
g gy mincs - o i g you
oo 51 8100 “5oms gympics s
DA ot gims tstiion and
Ropublcan Frequency®293"
naient g Froqant

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

Characteristic
obama
romney
barack.

mitt
obamacare
biden
romneys.
hardworking
bain
orandkids
bilionaies
millonaires
ledvetter
buenas

pell

noches
bless
dreamers
congresswoman
bipartisan
wealthiest
risked
trilion
republicans
recession
insurmountable
gentiemen
electing
pelosi
understands

_static/up.png

_images/demo_global_scale_log.png
Frequent

staples

jenerous ﬁ |
janna § Xunusual

Democratic Frequency

Sa"gi ft

lights ¢positive
dividestyranny

Average

Infrequent

the
of and ~Top Democratic

You gwe class
& to

washaveis = @ = middle
O
know all . it for barack

government | te"(hank. .3
freedombuilt XA

an

unemploymen(restore
olympics

sfla
essence |5|l
eager,
9 Iossi
cossem o o Move

spread -odds Ohe Si e
soosse o @ o

charities |ﬂC"1‘gLed sossssme o] & fair

'o%e

. forward
insurance

—d M

© o sacessmmen
2004 fellmain illinois cleangrandmother

assemblylit grandparents factories
addressed

o Would
.
barack
4 middle pay

B
o president forward
so

obama health
education

women
medicare
care

plan
values
last

cut

Top Republican
government
business

story

better

success
administration
paul
unemployment
freedom

liberty

small

came

son

leadership

Republican Frequency

requent

e
T e
Average VISIONS ¢risesmill ballotbreaks auto

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

1
Frequent

Characteristic
obama
barack
romney

mitt
obamacare
biden
romneys
barackobama
bailouts
hardworking
autoworkers
billionaires
bain
grandkids
millionaires
ledbetter
couponcare
bendiga
yohana
buenas

pell

noches
outcompete
dreamers
bless
congresswoman
bipartisan
underemployed
wealthiest
risked

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up-pressed.png

_images/1c88697a92302c7541176b18b7590a1fed01ede9.png
13 Top Democratic
e
. |8 workers
c o i
s |8 . who america i
A Carewcomenl""’s. ” f:ompanles .
28 middle class _ class ot % @ in insurance companies
5 medicare _ -, . " asts » “35s people auto industry
o . vote X ¥ oud " N
£ insurance | ove fought securiy ., A 3, e ..l:jus&ness industry
Q o e C olaw etter "
auto | affordable i veterans | fighting on® workers®® o ¢ . * . PROEL S IR] ° *government education
i re elect . ° » o
) _ auto '"dus"yaccess e Culs, charlotte ent P iraq " S, 20 s health care
insufance companies |, platform § israel . ep! join ’ 2 o Story
* opell o % no manerdetroll loans . investment line + mean’ term - - ” S > ° 1Ksue:;ess care
millionaires _clean” * funding street L won * financial » ~Save o X . 0 . . free freedom college
research .o bank - fall table e‘:‘l;t:;g cost o j{:::'sbusmess pay
voucher L. cutting |, . ean h!:uV N ®. e led \anted health
. - i . . .
clean energy black test . il ° " insurance
es spendin,
o 20 P]
. . i A car L.
fbrea!(s . - basic quality skills * " g paid * birth . costs* ran administration cuts X
actories . . o " third iowa i ¢ . " north carolina
@ take away o . hold 4 ° hire
&) « girl oo trust federal
a;, - wealthiest . bills . . & K team i
< . . bus . ’ . ok . o0 capital Top Republican
o ¢ .
jobs overseas _« e tea 55h°'1 bush union . hopes © owners job creators
childhood education” .® ’ co i ush e district . “regulations :
@ gm . ctinen steel oh offer reality. “hundreds V" r:ours * business
i easier ¢ ¢ ’ .
train il a0 o . L broke _ felt . simple unerlrll;:’loy.ment
betweentwo tax cut : : ¢ . small business
ideal grant . *“ que age vrvorry fear five
.-" leading apart miles hasnt. government
second term * uncle brings . B seem fix incil federal government
compromise neither fuel $10 {uneiohn lowest ¢ . result e principles >
lay ’ . June. " * wealth < edge . fiscal free enterprise
fulfill il N “ e eas *tells fathers ~bain capital enterprise
pushed ~ teaching” Vo risks T e R ¢ de * ‘yearslateP®S ¢ o prise
. o* . .blame ¢ begin reagan administration
younger B o . need
. .
wisdol i < ° liberty
- Mstarting . ¢ coal 18 . .unemployment federal
8 escape mindssearch « duty o S8 . X
3 - business owner rocess & 42 failing ann olympics leadership
3 p " rose t d d ympi
_g gift experienced turned aroun capital
- america
Republican Frequency
T T T 1
Infrequent Average Frequent

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

Most similar
jobs

jobs overseas
creating jobs
create jobs
job

job growth

job creation
job creators
workers
seeking
businesses
opportunities
employees
industries
public employees
companies
insurance compan
services
business
working
unemployed
sector
unemployment
worker

small businesses
private sector
career

looking

auto industry
small business

_images/demo_moral_foundations.png
Top Democratic
care.virtue
care.virtue care.vice
fairness.virtue
fairness.vice
authority.virtue
authority.vice
loyalty.vice
sanctity.vice
loyalty.virtue
sanctity.virtue

Cohen's d

0.660 —|

care.vice

fairness.virtue Top Republican
sanctity.virtue
0.000 fairness.vice onalty.vir?ue
sanctity.vice
authority.vice | authority.virtue onalty.AViCPT
loyalty.vice o authority.vice
sanctity.vice authority.virtue
fairness.vice
fairness.virtue
care.vice
care.virtue

-0.510 loyalty.virtue .

sanctity.virtue .

Log Frequency
1

T T T T
6.000 40.000 300.000 2000.000

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

_images/2012conventions0.0.2.2.png
Froquont

insurar

T, veterans

_charlotte
srael

loans |

MaYOrpanks

act,
reclect,

auto

Joe companies

Democratic Frequency

affordable
access
detroit

auts

insurar) oell

steet kept,

millonaires

loved
2012

meanty

Average

ollback o+
bod education

childn “a

jil
prosper
opponent , ” R

teats” ooy oy . g

il

fighting
top*
‘quarantee |

‘Top Democratic:
auo

insurance companies
auto industry

pell

last week

pell grants.

affordable

grants

platiorm

reduce

access

coverage

clean

millonaires

president
middle obama |

class

romney
americans

medcare
oo fought seniors.

rules,

‘mean
join

irag

+ save
gentiemen

* greatest

safe

Top Republican
unemployment
berty

olympics.

reagan

am

founding
constitution

church

ree enterprise
federal government
sons

enterprise

boy

Republican Frequency%"®2"esS

“simple

“principles

bain capital

.begin church
reagan

verty”
> *unemployment

“olympics

Introquent
Democratic

Average

Frequent

‘document count: 123; word count: 76,864

Republican document count: 66; word count: 58,138

Search for term

Democratic frequency:
13 per 25,000 terms
Some of the 40 mentions:
TOFN NATAMAN

“The veterans standing with me — all veterans of Iraq and Afghanistan — are partof a proud
legacy.

Term: veterans

Republican frequency:
2 per 25,000 terms
Some of the 4 mentions:

PAUL AVAN
We honor them and all o our veterans, and we thank them.

T ANINE MCDONNELL

Characteristic
obama
romney
barack.

mitt
obamacare
biden
romneys
hardworking
bain
grandkids
bilionaires
millonaires
ledvetter
buenas.

pell

noches
bless
dreamers
congresswomar
bipartisan
wealthiest
risked
tilion
republicans
recession
insurmountable
gentiemen
electing
pelosi
understands

_images/demo_nmf_topic_model.png
Qo 13.parack

343198 por 25K words.

Frequent

3. women

Demosrat Fraquancy

&8 wong,

a1 amercans |
a

0. famies

39 tuwre
o g

s

73.pian | v

T2t

45, locton
. ecay

EXE

st.maie”

70. comacrats
. 55.come.

Mverago

9. new
30, oo
2. ume

98, worid

6. ropubiican |

7. goo

L enpow
95,101 62 job
srgnt_ -

‘e came
1709

20.bun,

em
25.croce

3¢ makes. 53, cnange

85,1010 58.n0p.
7510w
75, caroina

82,10

94 baen 27.baleve.

w20

.
= o ongnt

40.00n0
25,102y

45100k

EXN.
srose o sonngs 0.thank
78 siand

5. gontomon
10. answer

9.0

ntrequent

. tmos |

42 1o0a

Top Democratic
33, women
68.wrong

48. forward
73. plan

60. middle
50.fight

46. election
80. families
21.ve

70. democrats
13. barack
41. americans
12.let

9. future

2 prosicont,
28stales 15 romney |

s

attook,
28, pocple oAb
a7, .

amn
61 B

20 want 3s.an, .
. 8. amerca
6. wor .
o teyeas 53, way
YO sa.cnigren

500w
22 berer,

o, sefamly

o, * 19, country

“e1.s0y

77.man
2 st

v sa.big,

“72 harg 88.business |

‘Top Republican
55 government
97. leader

29, built

88, business
17.did

72. hard
84.big

0. thank.

24 just

98 world

81. came

57. think
79.new.

Repubican rchun'ﬂ/n’ man

S7.leater, 55 govermment

Infroquent Average

Democratic document count: 1

Froquont
23; word count: 76,864

Republican document count: 66; word count: 58,138

search for term Type a word or two.

Topic: 68. wrong

Topic preview: wrong, plain, lessons, folks, ighting, blame, unspeakable, obama, went, says, leamed, philosophy, spoke, author, impression, dead, reform, doubling, convention, tured

Democratic frequency:
343 per 25,000 terms
984 per 1,000 docs
Some of the 837 mentions:

TONIO VILLARAIGOSA
at's right. Si se pued.

ank you

ank you, Congresswoman Wasserman Schultz. | love you. Thank you for your leadership of this great party
d your role in planning this convention.

Republican frequency:
193 per 25,000 terms
864 per 1,000 docs
Some of the 338 mention:

MICHELLE VOORHEIS

‘Good evening, ladies and gentlemen. I'm Yohana de Ia Torre fve from backstage n the Repubiican National
Convention. And today | have the honor t be with Michigan delegate Michelle Voorheis. Welcome, Michele.
Hi, Yohana. s great to be here tonignt Michelle, why don't you tellus a litte bit about yourseif?Wel, ' a wife
and a mom, and | come from the small town of Clio, Michigan. And I'm a small- business owner.| understand

_images/demo_global_scale_log_orig.png
Frequent
1

Democratic Frequency

staples Seltstimulus

jenerous ﬁ sports
janna 8positive

lights
barrassed

divides
riches

yard |commercials

quent

InFe

Average

know

the
of and ~Top Democratic

you qwe class
to

- .
washaveis * 2 = middle

thank
government' tell . #

freedombuilt

lost
unemploymen(restore K

olympics

essence H e' H
eagerlal coal ’ l ! l!
expomvaodds o -"
buried .lvally.M 7
gridlock blind 35' .

slipping tackletrip2004main illinois cleangrandmother

Ty
o mae, o

move

madamaddressed crisests bargainbreaks auto
malia sillyo al

¢

all ot barack

B
o president forward
so

obama health
education

? middle pay

women
medicare
care

plan
values
last

cut

Top Republican
government
business

story

better

success
administration
paul
unemployment
freedom

liberty

small

came

son

leadership

Republican Frequency

requent

Average SaShadotr:hainl\loman mill ballot grandparents

Democratic document count: 123; word count: 76,836

1
Frequent

Characteristic
obama
romney
barack

mitt
obamacare
biden
romneys
barackobama
hardworking
bailouts
billionaires
autoworkers
bain
grandkids
millionaires
ledbetter

pell

buenas
noches
couponcare
bendiga
yohana

bless
dreamers
outcompete
congresswoman
bipartisan
underemployed
inmigrantes
wealthiest

_images/demo_japanese.png
Frequent

Average

Infrequent

Horadanshaku Tabimiyage Frequency

voe o oo ses
BB | topfe wm esolfices
® o ocome wEE oo oo

ET & w0 0 omo @ o000

'Eé.“ -iﬁl L L4 - esme o oo o -.%. -~
%E —-§. -e @0 amese @ o o comue o m
coseme =

10

eoF -QM.-. ome @mesn o o @t o0 ooms soms

0= o = " o emesome 0@t Lo «” o . %155. . o EHLY
%Tlf By b.‘i*'.‘f:."...___—-— o BE i O o BE _o” Y . oo E_&_;',. . o e m”):
T8 e o B o#RBET wE= - - e m, . = °
\ OBY s EEE £E 8D T 7 . . o o IR
TOBAUDD g g g kO - wo B T T m ot T La R T
wie 5 DR@AER TRn we® o any, Txe JSwk 0 pEy oLt
z g aT BUEE o an (E ce BT Bar R TR e R L e
5 Lanopat ™ ﬁﬁﬂggi%&ﬁ 4 OB = €</"f Rome g w0 Sohys mEEL
g & # _iﬁﬁﬂg%w&ﬂ] BIFE R E R e .
5 = R o ad SrE S o B i pEE s LTH3
o i W gRR S T m TR, R A
BR g g R o —— g E'.,-' /.o) -.. '- . _ﬁ!.-. ",
VE e Bt o et . e, mBOS
Bt 54 tU?’/:' e ’... a:. . ..-.'.. .‘.Fﬂﬁ'ﬂ S -
2Us Ty wREE e T i L R 0
E%,:¥ﬁ§§- Sl el e e e wow
X of oeq
R £ o [el 3 o
BL oBOU0 /\)

Top Shisei
BAES
iE BAES
fBE

/ "\

i)

<y

(=

THIR
xA

25
LAEW
SUA

"\

A ST

Top Horadanshaku Tabimiyage
fite

HE OB
JI: A o))
jcaiciAl
®E Hhh5
s
jcamiciANFEY
ELVA
HZ0D
HZh

\)

wE

/

b (&

Shisei Frequency’

T T T
Infrequent Average Frequent

Shisei document count: 1; word count: 124,931
Horadanshaku Tabimiyage document count: 1; word count: 32,415

_images/demo_tsne_style.png
million

n
eary =, added
ears ®willi
ago, ..V founded hispanics . trllllqn . doubled reproductive
kennedy . o . losing, *® . e Jreform
. e past week old, wingpre N o0 e, J8ccess
carefully . o ° dollar e dollars,
« long | decades half . o et preagt, T ° ° LI billions
florida . myth ¢ e° N . ® plan e . taxes
unidos una janesville, oo . ¢ o L. .trllllons . ®
oara U Jcourageoustampay = L. goals L. Cee, L o ¢ of o g bigger
los u e Loee ° Joelect ot oe g cewe ceat et ot e, rellef
sadly ¢ T, . P e, c, oo o ° ° ®e ® o0 . ve ~ spend
unfortunately _, s s] et ThLe % ° .
° “folks . ’ " . “*. burden
hey o 0 °
governor “yes ¢ S © < d
. i
P today _chris . oo ° ,g::tmymg
mi 0 said _joh LI
. bush John .
ryan '.. . david ° e’ crelators
.
ron® paul ‘castro -. e, threaten”$° o* arger
o
malley quite o _limitless government
. e® talks M .b'
artin,) . . « big
incredibly | °© s
sorry rosa’ Joan | . mandate
. K knocked
glad . .
gay ~ wrong . depend
let | L e, °® N
. eworse® ° % % . . rewarded
harm saying . ¢ C .t
., . ° wrise . . dream
. oy
just o e, L) belongs
. . o0 Jkeeping
. 0 cost
hurt o ¢ | asking imi L ® ®restore
h . o %o
unt it @K, taikthank . o e o e, ° c oo e protect
et e B I I R
bless ~ *yg S, R . Y. . . heal preserve
realize hear , ee trust -] °lead
afford stop foiow DMiNG N ° continue

determine

_images/demo_word_list_topic_model.png
Froquo
Demosrat Fraquancy

neatn
auo .
17281915 por 25k words.

auo

Average

ropublcans

deomocrats

israe

oymps

taves

Top Democratic.
ato
onama, iraq
health
republicans
education
taxes
israel
democrats
educaton iran

romney

obama
miltary
romney

mitary olympics

. ‘Top Republican
olympics
taxes
miltary
democrats
education
republicans
romney
israel
health
iraq
auo
iran
obama

Repubican Frequency

Infroquent Average

Froquont

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

Search for term

Type a word or tur

Topic: auto

‘Topic preview: auto, industry, cars, saved, collapse, parts, 1, workers, fa, detroit

Democratic frequency:
1728 per 25,000 terms
626 per 1,000 docs
Some of the 367 mentions:

REN EUSANIO
r almost 20 years I've been a proud member of the UAW Local 1112 —

y mom retired from GM after 30 years, and my brother worked there too.

utreally, everyone there i like family. We Iook out for each other not Just because we're GM or because we're
nioans, but we're Americans,

hen the auto industry was on it last legs, | was laid off, and | was terrified. How was | going to provide for
y daughter and my two boys or pay my mortgage? How was the Manoning Valiey going to survive when so

Republican frequency:
915 per 25,000 terms
530 per 1,000 docs
Some of the 93 mentions:

50B BUCKHORN
o Chairman Priebus and to my fellow Americans who have traveled from every comer of this great country to
be here in Tampa today, thank you for the honor of hosting the 2012 Republican National Convention. Your faith
and trust in us Is much appreciated.
Now let me tell you just a Il bit about my city. We wers buitt by people who worked hard and dreamed big.
Immigrant families who came here from Germany, Spain, ltaly and Cuba. They were cigar folles, port workers,
cattle rustiers. They were the economic engine that powered Tampa Bay. Today we are a city that represents all

_images/demo_sentence_piece.png
Frequent

Average

Infrequent

Democratic Frequency

—Obama
—President | .
—president _
—_me
—up o al,
. —an .ve °-.
—Work_one o,
j il ® —Mitt
__Barack jobs —or ° . . _when °_do _ will* -

. — —9?'_Iike..- e v

—mide. b SN g . or e _lIt

__back hose ® . ust —|

—women _care _right . l_That. - f.. . ._|
es’
—where __Now —f,
_health _qo. ° T
o
S, _pay _familes, — ° U e _fist
_forward. .o _plan. ._Iet o ee o .
Mod _education . ® '_pl;oud. ..
ledicare o B . . P
- . =_vo(e oI. . Tege
L4 o o

_fight °* . B LT, e

__everyone
—auto .

° o, ain
fair o

.
.
_fighting. -

.
—better .

.

vi‘_very °© —business

_government .

Top Democratic
__middle
__Barack
__President
__class
__health
__forward
__women
__education
—bpay
__Obama
__Medicare
_cut
__care
__plan

Top Republican
__government
__business
__story
__success
__better

__Paul

son
administration
freedom

Mitt

small
unemployment

__liberty

need

. . Paul
L I:y_bless
o) * .. _story
. built .
_Michelle*,.% e i -
__lllinois S — ® _ success
—bargain faith o o
woman : _wanted __son
Thank _ Olympics —unemployment
Republican Frequency
T T T 1
Infrequent Average

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

Frequent

_images/demo_sklearn.png
Froquont

Average

ntioquont

relgion

. -
2 1 ol “amyvasly, and,
0915 gl .

o e vanyone my

looking, fles + &M at o,

Not atatheism Frequency ™

Top altatheism
religion
people.
say
atheist
atheism
moral

are

bobby
deletion
motto
exist
manhattan
said
istamic

Top Not alt.atheism
oot

‘monitor
anyone
po

15
chip

y

ntrequent Average

alt.atheism document count: 480; word count: 92,512
Not alt.atheism document count: 10,834 word count: 1,989,876

Froquent

Characteristic
ax

edu

cannot

bhj

amenians
doesn

oz

ve

wouldn

didn

sn
stephanopouios
aren

don

couldn

_images/dispersion-basic.png
Rosengren's S

Less Dispersion

Medium
I

threat driving

pick , tge
nights g7
hearing
ol
strongest i} 3 I
franklinii .

bond ico “ron de el

More Dispersion

C . dixg

depression
spend

.
s, vote ®
‘democratic
LS, ¢ Lo
. .
®joe ¢ carolina
. * . .
reagan
capital

oklahoma

veterans

to and
n, o, &
s for ca
is .
this o *° that
on . s .
are™e | e we
» ¥ our I-
usall, @ they
. .
but president

has #_enot o
B

an Cestas ot

just® e pe o, Pwas_ my
M R

at . .
he

reat out « mitt
great, Log Frequency: 0.633395
Rosengren's S: 0.570556

make = ¢
many et

overway |
onlydid™ " » hadwould
o o Want
am
i Darack
* business
« "government
dream

women

energy

Characteristic
obama
barack

*the romney
mitt
obamacare
biden
romneys
hardworking
billionaires
grandkids
bain
millionaires
ledbetter
pell
dreamers
bless
congresswoman
bipartisan
wealthiest
risked
trillion
republicans
recession
electing
gentlemen
pelosi
understands
fought
grandchildren
greatness

Log Frequency

T
Low

Search the chart

Medium

Document count: 189; word count: 138,181

Term: mitt
Frequency: 501
Range: 115
SD: 4.028307
VC: 1.519661
Juilland's D: 0.893846
Rosengren's S: 0.564246
DP: 0.453122
DP norm: 0.453137
KL-divergence: 1.083453

Matched 115 out of 189 documents: 60.85%

T 1
High

O35 IS fTALh A3 ATS

_static/plus.png

_images/dispersion-residual.png
Less Dispersion

Medium

More Dispersion

Rosengren's S

great. .0
make * e OF
many |et e it* mi
over,
“way .
onlydid ° o

same take o° & e
o

o =% ve
hadwould

understand tun |

leave Yes
answer

depression bad 4 «°

spend

doubtattack bigges!

threat driving
pick

nights 7
hearing I N
i

carolina
o

strongest
franklinii
bond .

reagan veterans

capital

«* know

ijs for
this °

on mC s

are™ o it o
e ol

Usall -, »* they
has #°_.not « but _president

® L e® as ot s

. my
» about ¢ america
obama

L
e romney

mitt

Ll
our "o

the

Log Frequency

Lower than Expected
still

off

same

take

many

own

other

only

over
before
understand
depression
leave

turn

More than Expected
women
she

mitt
carolina
energy
north
dream
business
ryan
small
forward
veterans
wisconsin
romney

T T
Low Medium

Document count:

189; word count: 138,181

Term: mitt

Frequency: 501
Range: 115
SD: 4.028307

T
High

Characteristic
obama
barack
romney

mitt
obamacare
biden
romneys
hardworking
billionaires
grandkids
bain
millionaires
ledbetter
pell
dreamers
bless
congresswomal
bipartisan
wealthiest
risked

trillion
republicans
recession
electing
gentlemen
pelosi
understands
fought
grandchildren
greatness

_images/doc_pca.png
BOB WHITE |

KERRY HEALEY |

JOHN SUNUNU TED OPAROWSKY
.
e ¢ °TOM STEMBERG

BARNEY FRANK BARBARA COMSTOCK (1) KELLY AYOTTE
° KIM RHODE °
. . RAY FERNANDEZ | ANN ROMNEY
.
JOHN BOEHNER
GRANT BENNETT SCOTT WALKER | REINCE PRIEBUS *MARCO RUBIO
JANE EDMONDS RN I ® ,SHERVALENZUELA
o . .
¢ LUCE VELA FORTUNO
JACK MARKELL , JENNIFER GRANHOLM | PAUL RYAN | s ., CHRIS CHF:'ST'E
.
« . ° NARRATOR ° o MITTROMNEY®
CHARLES SCHUMER LISA STICKAN GEORGE W. BUSH .. o« ¢ M »
. .
JOHN KERRY JOHN MCCAIN | o . . CONNIE MACK
. L
SAM OLENS . . . ‘e, .o, o °JIM SINEGAL
PAT QUINN | BOBKING, ° & e JULANGASTRO**,, ,)0 * 7, SEBBUSH,
.
MARY KAY HENRY CHRISTOPHER VAN HOLLEN ° S e e ° JAMES ROGERS
e LBBY BRUCE JOE KENNEDY Il | o .t e,
ALEJANDRA SALINAS JEANINE MCDONNELL | KAL PENN * ANTONIO VILLARAIGOSA (1)
. ° ° o ® . * e
RAE LYNNE CHORNENKY CAROL BERMAN o . HARRY REID *«
. : MARIA CIANO '\ s MALA HARRIS Lo B e e .. JARED POLIS
. . 0, *° . .
STENY HOYER (1) ° JUDYCHU | \aTE DAVIS * . . ANGIE FLORES
S e ©® ARNE DUNCAN DENISE JUNEAU
DEBBIE WASSERMAN SCHULTZ (1) | DANMALLOY DOUG STERN | . ° e JANTHONY FOXX JIM HUNT
. ° . JOHN PEREZ_ * MR. ° .
JAMES CLYBURN JASON CROW . . MEL WATT |
o
IANA DEGETTE | STEVE ISRAEL | . JOHN NATHMAN DAVID PRICE * KAY HAGAN |
: PEDRO F‘IEF{LUISIG'K' BUTTERFIELD,
; CECILE RICHARDS PATTY MURRAY | y
SEBELIUS | . BARBARA LEE |
.
ERIC SHINSEKI WALTER DALTON

BARBARA MIKULSKI | NANCY PELOSI (1) |

BEV PERDUE |

NANCY PELOSI (2) |

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

_images/general_inquirer2.png
Topic: PosAff

Topic preview: accept, acceptable, acceptance, accord, adventurous, advisable, appeal, ardent, attachment, auspicious
Description: 126 words of positive affect "denoting positive feelings, acceptance, appreciation and emotional support."

Democratic frequency:
102 per 25,000 terms
976 per 1,000 docs
Some of the 941 mentions:

Republican frequency:
130 per 25,000 terms
1000 per 1,000 docs

Some of the 907 mentions:

MICHELLE OBAMA
Thank you so much. Tonight, | am so thrilled and so honored and so proud to introduce the love of my life —

ANTONIO VILLARAIGOSA
That's right. Si se puede.
Thank you.
Thank you, Congresswoman Wasserman Schultz. | love you. Thank you for your leadership of this great party and
your role in planning this convention.
I'm honored to serve as the chair of this historic 2012 Democratic National Convention, where we will renominate
President Barack Obama and Vice President Joe Biden.
And as | introduce the — as the permanent chair of the 2012 convention, as | introduce the first official to act here,
Congressman Steny Hoyer, to give remarks on behalf of the convention parliamentarians. Thank you.

JANE EDMONDS
Thank you for the warm welcome. | am honored to be here with you tonight to share my feelings about Mitt
Romney. By way of background, my politics is as a liberal Democrat. My passion is about education, workforce
training and leadership.
When [first met Governor Romney, | was struck by his humanity, his grace, his kind manner.
It was just the two of us in his office when | met him as a finalist for a Cabinet position in his administration. | could
tell immediately just by our interaction that he is the real thing, authentic.
He struck me then and now as honest, transparent and inclusive. | somehow knew during that meeting that he is
demanding of himself, and — — he'd be demanding of anyone who is part of his administration. | wanted to be
around him and in that kind of environment, where my energy, skills and talents could be channeled along with
others toward the public good.
| could tell by our conversation that the governor was in office not for himself or to promote himself but for the people.

_images/general_inquirer.png
Top Democratic

e
3 Female
@
N Female POS
599 2 ° Decreas
.
4 POS PowAuPt
= Decreas , MeansLw PowAuPt SocRel 0
g it . © . . SocRel
S Hostile
(=]
£ ‘ Exert * Academ MeansLw
5 PowCon | Role | Hostile
=~ PowCoop | TrnLoss . . TranLw Polit@ Milit
o . Perceiv | N . Strong
& Exch RoGain AffGain PiLw Negativ Space Exert
2 Land Persist _ Tool Ngtv Academ
2 NUMB
8 BodyPt ORD Vary Travel HU PowTot Role
> Ought M Means ° S, .
S . Fail o oCARD o RenOth * Time@ *Active PowCon
o S|
Stay Forch el P Rel “Work Power Vehicle
Eval@SkIPt WibLoss etcl NotLw orl
NegAff . Pl:owLo;so PLACE WHOth Econ@ PowCoop
. 'owl AffOth
0 EnlEnds NatObj Ao PowGain If EniTot
egion
i Submit ;
RspLoss - PowDoct ZHISh EXPFSBV) Legm“ mit oL EnlOth Top Republican
a .
WitPt ExldgP1WItTran Y eon Doctrin Virtue Affil Relig
WibGain | R Naton , o = Negate A"Tflir‘m_ CO"A"BS . Pty PosAff
‘Rise *) TIME . ™ o “Undrstoyer © AffPt
WIbPt RspGain EMOT *« ° . e o .
“ Nonadlt . . N .Know Positiv DIM
.
; RcEthic « EndsLw Passive
. _ComnObj | oo ® ECON
Kin@ “FREQ Ty, PosAff ° RcEnds
. 102:130 per 25k words Name
Yol score: -5.21249
ReEnds | | P You
DM, AfPt Naine rassive SV
: PosAff | MALE
-6.12 -
Weak
Relig , Our
FREQ
Iv
Log Frequencyso e
T T 1
1000 10000

Democratic document count: 123; word count: 76,864
Republican document count: 66; word count: 58,138

_images/sfs1.png
Scaled F-Score

Associatied terms have a relatively high category-specific precision and category-
specific term frequency (i.e., % of terms in category are term)

Take the harmonic mean of precision and frequency (both have to be high)
We will make two adjustments to this method in order to come up with the final

formulation of Scaled F-Score

Given a word w; € W and a category ¢ € C, define the precision of the word w; wrt to a category as:
#wi, ¢)
5

Tecc #wi0)”

The function #(w;, cj) represents either the number of times w; occurs in a document labeled with the category ¢j or
the number of documents labeled ¢; which contain w;.

prec(i,j) =

Similarly, define the frequency a word occurs in the category as:

L. #(Wiacj)
fi = =
eatd Zvew #w,¢)

The harmonic mean of these two values of these two values is defined as:

prec(i, j) - freq(i,)
B2 - prec(i, j) + freq(i,)

Hyioj) = (1 + %)

P € R is a scaling factor where frequency is favored if # < 1, precision if # > 1, and both are equally weighted if
p = 1. F-Score is equivalent to the harmonic mean where f = 1.

_images/sfs10.png
T Top Positive
z‘na’ best
i entertaining
] best |
% entertaining | fun fun
5} .
@ heart | . e glieat
N our” ° love sill, ;may good still
ride . family WUS first way love
hilarious o _ * music] funn . . his.
moore . : b aworth © . ° °life Ve . most what with | and heart
flaws | e e, man . . © e o an, e, performance
. . m
riveting . e . .f;::r.- “cast .408s & some ° story ' of _ both
. . L) . LI N make N i
kinnear kids old i from has you in S a our
inn ook will apout s performances
. it star oo info but that the
wilco i on it i
fick e akes are one s for it us
undercover feel gee N ma
nickleby - something y
romantic year
suspensef!.ll job tale selfy original
reggio) laughs
fit . directed .
sequels K ice satie Top Negative
antwone late sequel cinematic bad
i i acting
inoffensive I "o gquite many too
indulgent e o 0 00 o thriller only
comedic e @ 00 0cscseg ve ': ©. comedy " at than
. e s so0ssoe . oy ¥ et as were
t .
retrea . better even time allpy o, no
cliched = “characters more
impostor .. ° out N this would
. . .
o 8 *, mueh, be movie just
. offe little . . ° ° :
might , nothing * or” P . t script
. there | s0 i* Clike should
e o ot ° STe® e thi
" N
video .script. eplot action “just . 9
were woul ¢« O video
only 100
bad . plot
nothing
feels
Log Frequency
T T T 1
é 60 500 4000

_images/semiotic_square_plot.png
Reviews

you, its, movie, i, like, your, if, good, much, comedy, funny, t, enough, director, well, film, or, movies, even, characters

best
fun

entertaining .

Search for term

she, her, him, mother, father, named, world, roxie, sent, finds, friends, husband, against, find, son, agent, prison, help, woman, secret

Type a word or two..

you .
movie !
its
good | our the
funny your it too
N . much °
director
. enough comedy Or
et movies w.e R filmthan®Ye" t action
i lim so characters i
us - films - any sn script
y way wovrvlilat R make makes very little plot would
great performance * o JSOMe. de be not do everyjust should
. o cast oo, re ve less no
still N o* N feels
. .periormances drama such - ": N . watch Off might
o bi " g
our® . those kids g silly long .
n <both enjoyable yoon . _sweet about d tself another thing
eart | year ride, ofirst o Lo wil nearly over " yideo only
* e o worst
. . were
hilarious ,-‘ : tv ner, w::
flaws - © ‘ inste:
american | moore oL . ‘ i problem
take £ g stealing - Where
| perfect Sy save
ove, who " hit television
.
lif N called
family day 3ol they
« Mman * .) set money when
their his years_ girl house
he
. secret wan;s after
fnd son soon™Murder
N agent
roxie sent
named
world
father
him mother
she
her

Plot Descriptions

Positive document count: 2,455; word count: 46,873
Negative document count: 2,567; word count: 63,057

bad

Negative

too, bad, would, i, action,
really, like, isn, plot, movie,
script, should, much,
characters, no, you,
nothing, little, so, minutes

Not Positive + Negative
only, were, when, they,
instead, was, video, worst,
neither, nor, after, over,
where, obvious, tv, long,
mess, boring, premise,
problem

Not Positive

after, when, they, named,
murder, soon, friends,
husband, wants, prison,
himself, school, agent,
however, now, death,
secret, women, house,
home

_images/sfs3.png
.5 —

Portion of documents containing word that are positive

provides
emotions kinnear
popular beauty
wonderful : secretary
warm = changing
grief »

dance » throughout

unexpected
2
uses j§ our

urban “afgrant
wilco Jbest

.
dirty .;. < family
nickleby %, love
manhattan

heroes

pic

period .
disappointed
christmas

otheyS©

bottom z. “nojust
computer g_’ long
, hey
playing § {5
manipulative § ©
cliché
fatal § sitcom
wouldn ¥ \yaste
generic

mess $
collection

except -stale
pinocchio seagal

holes

mediocre

&¥ilms good

Top Positive
the

a

and

of

to

the

Top Negative
except
pinocchio
seagal
stale
collection
supposed
unfunny
uninspired
vapid
benigni
boring
called
ballistic

clums:
Portion of words used in positive reviews Yy

T 1
0.048

_images/sfs4.png
roten NS

Problem: harmonic means are dominated by ...c picuiaen

Take the normal CDF of precision and frequency percentage scores, which will fall
between 0 and 1, which scales and standardizes both scores.

Define the the Normal CDF as:
z
D(z) = / N (@ p, 0%) dx.
-0

Where N is the PDF of the Normal distribution, y is the mean, and o2 is the variance.

® is used to scale and standardize the precisions and frequencies, and place them on the same scale [0, 1].

Now we can define Scaled F-Score as the harmonic mean of the Normal CDF transformed frequency and precision:
S-CAT (i,) = Hy(®@(prec(i, j)), P(freq(i,))).

4 and o2 are defined separately as the mean and variance of precision and frequency.

A f of 2 is recommended and is the default value in Scattertext.

Note that any function with the range of [0, 1] (this includes the identity function) may be used in place of ®@. Also, when
the precision is very small (e.g., of a tiny minority class) normalization may be foregone.

_images/sfs2.png
Positive freq Negative freq pos_precision pos_freq_pct pos_hmean

term
the 2346 2288 0.506258 0.048037 0.087748
a 1775 1613 0.523908 0.036345 0.067975
and 1637 1179 0.581321 0.033520 0.063385
of 1480 1235 0.545120 0.030305 0.057418
to 942 1010 0.482582 0.019289 0.037095
it 826 801 0.507683 0.016913 0.032736
is 818 726 0.529793 0.016750 0.032473
s 808 749 0.518947 0.016545 0.032067
in 676 622 0.520801 0.013842 0.026967
that 617 602 0.506153 0.012634 0.024652

_images/sfs7.png
A second problem: low scores are low-frequency brittle terms.
Make the approach fair to negative scoring terms

Solution: compute SFS of negative class. If that score has a higher magnitude than the positive SFS,
keep that, but as a negative score.

Define the Scaled F-Score for category j as
S-CAT’ = S-CAT 4(i,).

Define a class —1j which includes all categories other than j.

and the Scaled F-Score for all other categories as
S-CAT 7 = S-CAT (i, 7).

Let the corrected version of Scaled F-Score be:

S-CAT/ if S-CAT/ > S-CAT 7,
Sp=2-(-05+11-SCAT? ifS-CATY < S-CAT7,).
0 otherwise.

Note that the range of S is now [—1, 1], where S < 0 indicates a term less associated with the category is question than average, and a
positive score being more associated.

_images/sfs8.png
Positive Negative

pos_precision pos_freq_pct pos_hmean pos_precision_normcdf pos_freq_pct_normcdf pos_scaled_f_score

freq freq

term
bad 17 105 0.139344 0.000348 0.000694 0.190130 0.625807 0.291652
too 42 147 0.222222 0.000860 0.001713 0.248430 0.826505 0.382030
were 14 50 0.218750 0.000287 0.000573 0.245811 0.597317 0.348291
only 43 100 0.300699 0.000880 0.001756 0.311369 0.832785 0.453267
would 33 72 0.314286 0.000676 0.001349 0.322931 0.763424 0.453872
no 65 130 0.333333 0.001331 0.002651 0.339430 0.934547 0.497990
just 76 145 0.343891 0.001556 0.003098 0.348713 0.962723 0.511979
video 1 39 0.220000 0.000225 0.000450 0.246752 0.568300 0.344099
script 25 57 0.304878 0.000512 0.001022 0.314906 0.698142 0.434035
should 27 58 0.317647 0.000553 0.001104 0.325819 0.715199 0.447687

_images/sfs5.png
Pos:‘t:;l: Nega:::: pos_precision pos_freq_pct pos_hmean pos_precision_normcdf pos_freq_pct_normcdf pos_scaled_f_score

term
best 108 36 0.750000 0.002211 0.004410 0.719483 0.995008 0.835107
entertaining 58 13 0.816901 0.001188 0.002372 0.770690 0.909394 0.834316
fun 73 26 0.737374 0.001495 0.002983 0.709233 0.956259 0.814427
heart 45 1" 0.803571 0.000921 0.001841 0.760924 0.844900 0.800716
great 61 23 0.726190 0.001249 0.002494 0.700011 0.920936 0.795418
still 63 26 0.707865 0.001290 0.002575 0.684620 0.927988 0.787940
our 42 1" 0.792453 0.000860 0.001718 0.752608 0.826505 0.787827
performance 53 19 0.736111 0.001085 0.002167 0.708199 0.887454 0.787758
love 61 25 0.709302 0.001249 0.002494 0.685839 0.920936 0.786188
both 52 19 0.732394 0.001065 0.002126 0.705143 0.882645 0.783972

_images/sfs6.png
0.88 —

0.44

0.113 -

documents containing word that are positive (norm-cdf)

provides pacino

beauty , , , , o dragon portrait moore
d o Ppowerful
bloodyanc.e e ** 1; 't'flaws. spielberg
effective i
° e ® Jare delivers pjarious
lets . 'fa.n o ® “terrific o :50|id . o © enjoyable entertaining |
our .
sheer “sets ° o ° ° smart . . d heart
h tynac o e ® DAL Jaives ®american performance best
umanity . . eye' parte * . " love .
dity amp, = e . © . Jworks o performances | .o great ifun
yamn 19 . *." ° bl tue . . both e o5V
i . . R .I mr role o . . music family picture
rodriguez s gey L e e . piece * , day keep . drama us, may
i o e age, comic ° often man® e o i ©
kid hit 777 s oyet o o o o) life way higmost
wow' . oun . take h those films IS
0 d . . young . fans "= her o sucl e e o . good
sincere clever ¢+ o war kids ™ ® cast a o Cworkfunnyy eg®
S 2 _ wonemotional seen ggr . ® d °3e, 0%, moviesg e, ° s of
non i o bit It Stlot, de | e o old make we
N flick S€ . “n o, see » makes . e o about
es fit “ ®o o0 jf
boor ‘ feeholiywood * +, , big . e ST gty
ealy o o o writer once them °.°'re o VY neverino o fas
spoof ceo . d full 0 ve better new characters time:up : thlsv
er?cape - . N then get e doesn N h;‘;\”e
achieves . . ever i much "
surely | : eo % - . don do v off been _ litle or_t like
watch seems igh really the there so .
wish, N N where might | other when action %Y i
implisti N i 3o N just
SImp|ISlIC. °same 'hadlong.mlnutes . over' .plot was no .
substance _ o series feels o ° « “shoud . only
computer. . .sillything “after script would .
hot ¢ jokes °
hey | . were too
consider ® video
. o
bag g e bad
i .
save' °
mess§ ¢ Mor
. *mediocre
stealing

offensive poorly

Top Positive
best
entertaining
fun

heart

great

still

our
performance
love

both
performances
us

may
american

Top Negative
stealing
offensive
poorly
seagal
stale
collection
supposed
unfunny
uninspired
vapid
benigni
boring
called
ballistic

Portion of words used in positive reviews (norm-cdf)

T T
0.459 1

_images/svd2.png
obama | president &

carolina seerans,
° middle
north ¢
. .
class health
Valuesforward . °
education . . barack _ yote .
2. democratic medicare® ¢
democrats fight pa N .
. pay insurance
opportunity | fought | Jchoicee (amijies
. .
S ocharlotte _ . 'miliiary oclect o o seniors
convention . country , leaders biden | A A N S .°'coverage
® american * oM believe =, . BRI Ty -
dream . . ° ve h 9 ? '¢#+ republicans
o © daughters
future * sonool v o
thank | energy | nation - . away | ryan
america . o o .
. buit A hige € ° bankrupt companies
small . hope ¢ & massachusetts
. better paul
.
story et ¢ ° governor
government | ® leader capital
business ® bain
. man .

romney

mitt
-

women

Top Democratic
class
‘niddle
forward
barack
health
education
pay
obama
women
care
medicare
president
plan
values

Top Republican
government
business
story

paul
success
better

mitt

small

thank

god

need

bless

world

came

Characteristic
obama
barack
romney

mitt
obamacare
romneys
biden
barackobama
autoworkers
bailouts
grandkids
billionaires
hardworking
buenas
noches
ledbetter

bain
millionaires
underemployed
pell
congresswomal
dreamers
wealthiest
bipartisan
risked

bless

trillions
recklessness
trillion

janna

_images/sfs9.png
FOs Frecise

imprecise

Neg rrecise

Precision

expectations - .'

featuring

ich man my
very which . y pfar __amostrather goes es
asf e timeany o o ,°° roug! % e S0t d 4
: ; N sea
more:"f <big . . .

coes cop
nots P& T howe o ‘e fiv -

have $ o ° G s 3o
like 't o off ¥ D', . oless °8
really

plot , another ~ SeeMSe
.

. Jminutes “hag ® e e
.script-. . silly
® after

thanpy

“ee sit
.

.
.chris

feels
thing
too were |

wallace
.

nearly _left ¢ .

. .
instead . 9208 o -w.du.ll . .flat .

bad ¢« e
. nor premise

.e
°* obvious

worst .
mess
.

boring

i title laz
video . Jazy

Ld .
superficial

o .bhshoot
.®

seagalstealing

beautiful

nicholas °.% _bit
turns dark psychological puts j

longer
° saving

“remember

e o o oSustain
® © siry,computer
.

popularblend
emotions o MiNNINg maore

artist o o Powerful
. o spielber
grief o** ° U P! 9

terrific _rare gglj -
smarter o A€ delivers pjarious

. .
brosnan e . o, % e
sexy ° e above

.
urban °

enjoyable

our Gheart e
.

. entertaining

. american Performances best |
gives] «®
erole b:world Smusic
mre o » keep

* tone,
. . .
win ° e ,*

allows ftctae

.

" o il fun

fam'lypicturt:.l °
us

e, USe may

here life way his

. ® otheir

.
e .. Ctind e

un .
“interesting

flick « .

eut least sef o e e o
ice eas!

road actually romantic

Top Positive
best
entertaining
fun

heart

great

still

our
performance
love

both
performances
us

may
american

Top Negative
bad
too
were
only
would
no

just
video
script
should
thing
instead
plot
feels

Frequency

T
Frequent in Neg

T
Not Frequent

Frequent in Pos

_images/svd1.png
convention . ®

thank _energy | nation |

obama president
. .

veterans
.
iddle *
middle "o
' barack class health |
i values i
education | . ° . Lot ,democratic are

. c
democrats medicares

opponunity. fought.
. american .
o mom

fight pay families

’ . . ’
. o *fair ©. men Seniors insurance

.
s

.
° o, e °° coverage
X i

N republicans

.
57 away “ryan
" £ companies
built 4, ¢ " bankrupt
.
e e
“**“boston
olympics o governor
. M massachusetts
t . . . "
. time man capital
government .

bain
.

Democratic document count: 123; word count: 76,836
Republican document count: 66; word count: 58,138

romney |

mitt

Top Democratic
women ‘:Iass
middle
forward
barack
health
education
pay
obama
women
care
medicare
president
plan
values

Top Republican
government
business
story

paul
success
better

mitt

small

thank

god

need

bless

world

came

Characteristic
obama
barack
romney

mitt
obamacare
romneys
biden
barackobama
autoworkers
bailouts
grandkids
billionaires
hardworking
buenas
noches
ledbetter

bain
millionaires
underemployed
pell
congresswomar
dreamers
wealthiest
bipartisan
risked

bless

trillions
recklessness
trillion

janna

